A review on advances in doping with alkali metals in halide perovskite materials
Abstract Recent progress in doping of halide perovskite materials (HPM) by using targeted elements has provided a dimension beyond structural and compositional modification, for achieving desired properties and resulting device performance. Herein doping of alkali metal ions (Li+, Na+, K+, Rb+, and...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c483e5d1486499e8245fbdc0a0e7ea6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Recent progress in doping of halide perovskite materials (HPM) by using targeted elements has provided a dimension beyond structural and compositional modification, for achieving desired properties and resulting device performance. Herein doping of alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) in three-dimensional HPM is reviewed to lay a particular focus on advances in synthesis, doping-induced changes in optical and electrical properties, and their optoelectronic applications. The introduction of alkali metals in HPM shows an effective route for improved morphology, suppressed ion migration, reduction in non-radiative recombination, passivation of bulk and interface defects, and increased thermal stability. In the end, we provide our perspective that the effect of alkali metal incorporation on the efficiency and stability of HPM should be further investigated via in-situ characterization methods and doped HPM should be considered for more functional applications. Graphical abstract |
---|