Efficient-CapsNet: capsule network with self-attention routing
Abstract Deep convolutional neural networks, assisted by architectural design strategies, make extensive use of data augmentation techniques and layers with a high number of feature maps to embed object transformations. That is highly inefficient and for large datasets implies a massive redundancy o...
Guardado en:
Autores principales: | Vittorio Mazzia, Francesco Salvetti, Marcello Chiaberge |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c49880da55c4f129745f80880ff3925 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of Peptide Detectability Based on CapsNet and Convolutional Block Attention Module
por: Minzhe Yu, et al.
Publicado: (2021) -
A System for the Detection of Polyphonic Sound on a University Campus Based on CapsNet-RNN
por: Liyan Luo, et al.
Publicado: (2021) -
COVID-19 early detection for imbalanced or low number of data using a regularized cost-sensitive CapsNet
por: Malihe Javidi, et al.
Publicado: (2021) -
MethylSPWNet and MethylCapsNet: Biologically Motivated Organization of DNAm Neural Networks, Inspired by Capsule Networks
por: Joshua J. Levy, et al.
Publicado: (2021) -
EnCaps: Clothing Image Classification Based on Enhanced Capsule Network
por: Feng Yu, et al.
Publicado: (2021)