Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries
Aluminum-air batteries are lightweight and cost effective, but performance is limited by corrosion and solid by-products. Here the authors catalyze oxygen reduction with silver manganate nanoplates and develop an aluminum-air flow battery that delivers high energy density and alleviates side reactio...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c51c2c36a964f6f9394370edea646bf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Aluminum-air batteries are lightweight and cost effective, but performance is limited by corrosion and solid by-products. Here the authors catalyze oxygen reduction with silver manganate nanoplates and develop an aluminum-air flow battery that delivers high energy density and alleviates side reactions. |
---|