Copper-azide nanoparticle: a ‘catalyst-cum-reagent’ for the designing of 5-alkynyl 1,4-disubstituted triazoles
Abstract A single pot, wet chemical route has been applied for the synthesis of polymer supported copper azide, CuN3, nanoparticles (CANP). The hybrid system was used as ‘catalyst-cum-reagent’ for the azide-alkyne cyclo-addition reaction to construct triazole molecules using substituted benzyl bromi...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c62f8d1afc54691b72be3226365907e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract A single pot, wet chemical route has been applied for the synthesis of polymer supported copper azide, CuN3, nanoparticles (CANP). The hybrid system was used as ‘catalyst-cum-reagent’ for the azide-alkyne cyclo-addition reaction to construct triazole molecules using substituted benzyl bromide and terminal alkyne. The electron donating group containing terminal alkyne produced 5-alkynyl 1,4-disubstituded triazole product whereas for alkyne molecule with terminal electron withdrawing group facilitate the formation of 1,4-disubstituted triazole molecule. |
---|