Novel screening model of obstructive sleep apnea for snorers with suspected NAFLD undergoing liver sonography

Abstract Background/aims Given the increased incidence of obstructive sleep apnea (OSA) among patients with nonalcoholic fatty liver disease (NAFLD), noninvasive screening methods are urgently needed to screen for OSA risk in these patients when conducting an office-based assessment of hepatic steat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yang-Bor Lu, Yu-Chieh Weng, Yung-Ning Huang, Hsiung-Ying Huang, Pei-Ting Cheng, Hui-Shan Hsieh, Ming-Shao Tsai
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/8c6a9f1ec2024e3db920e6a868943a3c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background/aims Given the increased incidence of obstructive sleep apnea (OSA) among patients with nonalcoholic fatty liver disease (NAFLD), noninvasive screening methods are urgently needed to screen for OSA risk in these patients when conducting an office-based assessment of hepatic steatosis. Therefore, we investigated the controlled attenuation parameter (CAP) and hepatic steatosis index (HSI) in patients with and without OSA and developed screening models to detect OSA. Methods We retrospectively reviewed the medical records of all adult snorers with suspected NAFLD undergoing liver sonography between June 2017 and June 2020. Records encompassed CAP and HSI data as well as data collected during in-hospital full-night polysomnography. The multivariate logistic regression models were constructed to explore the predictors of OSA risk. Furthermore, model validation was performed based on the medical records corresponding to the July 2020–June 2021 period. Results A total of 59 patients were included: 81.4% (48/59) were men, and the mean body mass index (BMI) was 26.4 kg/m2. Among the patients, 62.7% (37/59) and 74.6% (44/59) (detected by the HSI and CAP, respectively) had NAFLD, and 78% (46/59) were diagnosed with OSA on the basis of polysomnography. Three screening models based on multivariate analysis were established. The model combining male sex, a BMI of > 24.8, and an HSI of > 38.3 screened for OSA risk the most accurately, with an area under the receiver operating characteristic curve of 0.81 (sensitivity: 78%; specificity: 85%; and positive and negative predictive values: 95% and 52%, respectively) in the modeling cohort. An accuracy of 70.0% was achieved in the validation group. Conclusions The combination screening models proposed herein provide a convenient, noninvasive, and rapid screening tool for OSA risk and can be employed while patients receive routine hepatic check-ups. These models can assist physicians in identifying at-risk OSA patients and thus facilitate earlier detection and timely treatment initiation.