A computational framework to establish data-driven constitutive models for time- or path-dependent heterogeneous solids
Abstract We propose and implement a computational procedure to establish data-driven surrogate constitutive models for heterogeneous materials. We study the multiaxial response of non-linear n-phase composites via Finite Element (FE) simulations and computational homogenisation. Pseudo-random, multi...
Enregistré dans:
| Auteurs principaux: | Weijian Ge, Vito L. Tagarielli |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/8c6f3d270e9143ca9b35312983a993bd |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The effects of heterogeneous mechanical properties on the response of a ductile material
par: Yichi Song, et autres
Publié: (2021) -
Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold
par: Yoshihiro Kanno
Publié: (2021) -
On the Constitutionality of an Act to Establish a Bank
Publié: (2017) -
A general framework of multiple coordinative data fusion modules for real-time and heterogeneous data sources
par: Kashinath Shafiza Ariffin, et autres
Publié: (2021) -
Task-driven assessment of experimental designs in diffusion MRI: A computational framework.
par: Sean C Epstein, et autres
Publié: (2021)