A computational framework to establish data-driven constitutive models for time- or path-dependent heterogeneous solids
Abstract We propose and implement a computational procedure to establish data-driven surrogate constitutive models for heterogeneous materials. We study the multiaxial response of non-linear n-phase composites via Finite Element (FE) simulations and computational homogenisation. Pseudo-random, multi...
Guardado en:
Autores principales: | Weijian Ge, Vito L. Tagarielli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c6f3d270e9143ca9b35312983a993bd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The effects of heterogeneous mechanical properties on the response of a ductile material
por: Yichi Song, et al.
Publicado: (2021) -
Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold
por: Yoshihiro Kanno
Publicado: (2021) -
On the Constitutionality of an Act to Establish a Bank
Publicado: (2017) -
A general framework of multiple coordinative data fusion modules for real-time and heterogeneous data sources
por: Kashinath Shafiza Ariffin, et al.
Publicado: (2021) -
Task-driven assessment of experimental designs in diffusion MRI: A computational framework.
por: Sean C Epstein, et al.
Publicado: (2021)