Machine Learning Classification of Mild Traumatic Brain Injury Using Whole-Brain Functional Activity: A Radiomics Analysis
Objectives. To investigate the classification performance of support vector machine in mild traumatic brain injury (mTBI) from normal controls. Methods. Twenty-four mTBI patients (15 males and 9 females; mean age, 38.88±13.33 years) and 24 age and sex-matched normal controls (13 males and 11 females...
Guardado en:
Autores principales: | Xiaoping Luo, Dezhao Lin, Shengwei Xia, Dongyu Wang, Xinmang Weng, Wenming Huang, Hongda Ye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c728b3914294715884ff2a9c68bb180 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Correction to: Rasch analysis of the Brain Injury Screening Tool (BIST) in mild traumatic brain injury
por: Nusratnaaz Shaikh, et al.
Publicado: (2021) -
Shape effect of cerium oxide nanoparticles on mild traumatic brain injury
por: Dong Hyuk Youn, et al.
Publicado: (2021) -
Effects of Mild Blast Traumatic Brain Injury on Cognitive- and Addiction-Related Behaviors
por: Matthew J. Muelbl, et al.
Publicado: (2018) -
Growth hormone deficiency testing and treatment following mild traumatic brain injury
por: Leah J. Mercier, et al.
Publicado: (2021) -
Microstructural Tissue Changes in a Rat Model of Mild Traumatic Brain Injury
por: Karthik Chary, et al.
Publicado: (2021)