How can spatial structural metrics improve the accuracy of forest disturbance and recovery detection using dense Landsat time series?
Forest disturbance and recovery detection is vital for assessing ecosystem resilience and service to further establish the sustainable ecosystem development. Time series analyses of remote sensing data provide essential and effective methods in such research. Some studies have incorporated spatial s...
Guardado en:
Autores principales: | Yuanyuan Meng, Xiangnan Liu, Zheng Wang, Chao Ding, Lihong Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c7491347bab42ab9d344ee3fecd6293 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 Landsat record
por: Katarzyna Ewa Lewińska, et al.
Publicado: (2021) -
Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine
por: Maoxin Zhang, et al.
Publicado: (2021) -
Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine
por: Wang Ruimeng, et al.
Publicado: (2021) -
A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
por: María Pedreros-Guarda, et al.
Publicado: (2021) -
Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series
por: Meiling Liu, et al.
Publicado: (2021)