Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network

With the assistance of the evaluation algorithms based on the well-performed backpropagation neural network (BPNN), we quantitatively analyze the importance of the structural parameters of the supported helical microfiber (HMF) temperature sensor. The relative output intensities of HMF sensor at dif...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juan Liu, Minghui Chen, Hang Yu, Jinjin Han, Hongyi Jia, Zhili Lin, Zhijun Wu, Jixiong Pu, Xining Zhang, Hao Dai
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/8c7793bcc0a54932b21f588ace0db1f6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8c7793bcc0a54932b21f588ace0db1f6
record_format dspace
spelling oai:doaj.org-article:8c7793bcc0a54932b21f588ace0db1f62021-11-18T00:10:24ZQuantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network2169-353610.1109/ACCESS.2021.3124665https://doaj.org/article/8c7793bcc0a54932b21f588ace0db1f62021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9597537/https://doaj.org/toc/2169-3536With the assistance of the evaluation algorithms based on the well-performed backpropagation neural network (BPNN), we quantitatively analyze the importance of the structural parameters of the supported helical microfiber (HMF) temperature sensor. The relative output intensities of HMF sensor at different temperatures are predicted by the BPNN with the HMF&#x2019;s structural parameters as the input variables. The best-forecasted performance is obtained by the BPNN with one hidden layer of ten neurons. Compared with the actual values, the root-mean-square error (RMSE) and the correlation coefficient of the predicted values are 9.7 <inline-formula> <tex-math notation="LaTeX">$\times \,\,10^{-3}$ </tex-math></inline-formula> dB and 99.84&#x0025;, respectively. Based on the BPNN with precise prediction, the backward stepwise elimination and the holdback input randomization methods are used to quantitatively discuss the influence of the structural parameters on the output intensity of the HMF. The relative importance from high to low is the helical length (&#x007E;38&#x0025;), microfiber diameter (&#x007E;27&#x0025;), helical angle (&#x007E;25&#x0025;), and cone angle (&#x007E;10&#x0025;). The importance of four geometric parameters obtained by the two methods is ranked the same. Quantitative analysis of structural parameters relying on the well-predicted BPNN can give basic information on the structural characteristics of the HMF sensor, which helps to optimize the structure design of the optical sensors based on micro/nanofiber and provides a powerful guarantee for its practical application.Juan LiuMinghui ChenHang YuJinjin HanHongyi JiaZhili LinZhijun WuJixiong PuXining ZhangHao DaiIEEEarticleHelical microfibertemperature sensorquantitative contribution of structural parametersbackpropagation neural networkElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 148156-148163 (2021)
institution DOAJ
collection DOAJ
language EN
topic Helical microfiber
temperature sensor
quantitative contribution of structural parameters
backpropagation neural network
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Helical microfiber
temperature sensor
quantitative contribution of structural parameters
backpropagation neural network
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Juan Liu
Minghui Chen
Hang Yu
Jinjin Han
Hongyi Jia
Zhili Lin
Zhijun Wu
Jixiong Pu
Xining Zhang
Hao Dai
Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network
description With the assistance of the evaluation algorithms based on the well-performed backpropagation neural network (BPNN), we quantitatively analyze the importance of the structural parameters of the supported helical microfiber (HMF) temperature sensor. The relative output intensities of HMF sensor at different temperatures are predicted by the BPNN with the HMF&#x2019;s structural parameters as the input variables. The best-forecasted performance is obtained by the BPNN with one hidden layer of ten neurons. Compared with the actual values, the root-mean-square error (RMSE) and the correlation coefficient of the predicted values are 9.7 <inline-formula> <tex-math notation="LaTeX">$\times \,\,10^{-3}$ </tex-math></inline-formula> dB and 99.84&#x0025;, respectively. Based on the BPNN with precise prediction, the backward stepwise elimination and the holdback input randomization methods are used to quantitatively discuss the influence of the structural parameters on the output intensity of the HMF. The relative importance from high to low is the helical length (&#x007E;38&#x0025;), microfiber diameter (&#x007E;27&#x0025;), helical angle (&#x007E;25&#x0025;), and cone angle (&#x007E;10&#x0025;). The importance of four geometric parameters obtained by the two methods is ranked the same. Quantitative analysis of structural parameters relying on the well-predicted BPNN can give basic information on the structural characteristics of the HMF sensor, which helps to optimize the structure design of the optical sensors based on micro/nanofiber and provides a powerful guarantee for its practical application.
format article
author Juan Liu
Minghui Chen
Hang Yu
Jinjin Han
Hongyi Jia
Zhili Lin
Zhijun Wu
Jixiong Pu
Xining Zhang
Hao Dai
author_facet Juan Liu
Minghui Chen
Hang Yu
Jinjin Han
Hongyi Jia
Zhili Lin
Zhijun Wu
Jixiong Pu
Xining Zhang
Hao Dai
author_sort Juan Liu
title Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network
title_short Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network
title_full Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network
title_fullStr Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network
title_full_unstemmed Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network
title_sort quantitative analysis of structural parameters importance of helical temperature microfiber sensor by artificial neural network
publisher IEEE
publishDate 2021
url https://doaj.org/article/8c7793bcc0a54932b21f588ace0db1f6
work_keys_str_mv AT juanliu quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT minghuichen quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT hangyu quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT jinjinhan quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT hongyijia quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT zhililin quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT zhijunwu quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT jixiongpu quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT xiningzhang quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
AT haodai quantitativeanalysisofstructuralparametersimportanceofhelicaltemperaturemicrofibersensorbyartificialneuralnetwork
_version_ 1718425176814649344