Quantitative Analysis of Structural Parameters Importance of Helical Temperature Microfiber Sensor by Artificial Neural Network
With the assistance of the evaluation algorithms based on the well-performed backpropagation neural network (BPNN), we quantitatively analyze the importance of the structural parameters of the supported helical microfiber (HMF) temperature sensor. The relative output intensities of HMF sensor at dif...
Enregistré dans:
Auteurs principaux: | Juan Liu, Minghui Chen, Hang Yu, Jinjin Han, Hongyi Jia, Zhili Lin, Zhijun Wu, Jixiong Pu, Xining Zhang, Hao Dai |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8c7793bcc0a54932b21f588ace0db1f6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Effects of Tungsten Disulphide Coating on Tapered Microfiber for Relative Humidity Sensing Applications
par: Norazida Ali, et autres
Publié: (2021) -
Improvised centrifugal spinning for the production of polystyrene microfibers from waste expanded polystyrene foam and its potential application for oil adsorption
par: Marco Laurence M. Budlayan, et autres
Publié: (2021) -
Framed slant helices in Euclidean 3-space
par: Osman Zeki Okuyucu, et autres
Publié: (2021) -
Study of Pressure and Curing Temperature in Reactive Powder Concretes (RPC) with different amounts of Metallic Microfibers
par: Christ,R, et autres
Publié: (2013) -
Use of experimental design to obtain polymeric microfibers with carbon nanotubes
par: Andressa Giombelli Rosenberger, et autres
Publié: (2020)