Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model
In complex urban intersection scenarios, due to heavy traffic and signal control, there are many slow-moving or temporarily stopped vehicles behind the stop lines. At these intersections, it is difficult to extract traffic parameters, such as delay and queue length, based on vehicle detection and tr...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c989fa1f6ff4597adb5774e13801f84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8c989fa1f6ff4597adb5774e13801f84 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8c989fa1f6ff4597adb5774e13801f842021-11-22T01:09:40ZTraffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model2042-319510.1155/2021/3515512https://doaj.org/article/8c989fa1f6ff4597adb5774e13801f842021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/3515512https://doaj.org/toc/2042-3195In complex urban intersection scenarios, due to heavy traffic and signal control, there are many slow-moving or temporarily stopped vehicles behind the stop lines. At these intersections, it is difficult to extract traffic parameters, such as delay and queue length, based on vehicle detection and tracking due to the dense and severe occlusion of vehicles. In this study, a novel background subtraction algorithm based on sparse representation is proposed to detect the traffic foreground at complex intersections to obtain traffic parameters. By establishing a novel background dictionary update model, the proposed method solves the problem that the background is easily contaminated by slow-moving or temporarily stopped vehicles and therefore cannot obtain the complete traffic foreground. Using the real-world urban traffic videos and the PV video sequences of i-LIDS, we first compare the proposed method with other detection methods based on sparse representation. Then, the proposed method is compared with other commonly used traffic foreground detection models in different urban intersection traffic scenarios. The experimental results show that the proposed method performs well in keeping the background model being unpolluted from slow-moving or temporarily stopped vehicles and has a good performance in both qualitative and quantitative evaluations.Qianxia CaoZhengwu WangKejun LongHindawi-WileyarticleTransportation engineeringTA1001-1280Transportation and communicationsHE1-9990ENJournal of Advanced Transportation, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Transportation engineering TA1001-1280 Transportation and communications HE1-9990 |
spellingShingle |
Transportation engineering TA1001-1280 Transportation and communications HE1-9990 Qianxia Cao Zhengwu Wang Kejun Long Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model |
description |
In complex urban intersection scenarios, due to heavy traffic and signal control, there are many slow-moving or temporarily stopped vehicles behind the stop lines. At these intersections, it is difficult to extract traffic parameters, such as delay and queue length, based on vehicle detection and tracking due to the dense and severe occlusion of vehicles. In this study, a novel background subtraction algorithm based on sparse representation is proposed to detect the traffic foreground at complex intersections to obtain traffic parameters. By establishing a novel background dictionary update model, the proposed method solves the problem that the background is easily contaminated by slow-moving or temporarily stopped vehicles and therefore cannot obtain the complete traffic foreground. Using the real-world urban traffic videos and the PV video sequences of i-LIDS, we first compare the proposed method with other detection methods based on sparse representation. Then, the proposed method is compared with other commonly used traffic foreground detection models in different urban intersection traffic scenarios. The experimental results show that the proposed method performs well in keeping the background model being unpolluted from slow-moving or temporarily stopped vehicles and has a good performance in both qualitative and quantitative evaluations. |
format |
article |
author |
Qianxia Cao Zhengwu Wang Kejun Long |
author_facet |
Qianxia Cao Zhengwu Wang Kejun Long |
author_sort |
Qianxia Cao |
title |
Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model |
title_short |
Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model |
title_full |
Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model |
title_fullStr |
Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model |
title_full_unstemmed |
Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model |
title_sort |
traffic foreground detection at complex urban intersections using a novel background dictionary learning model |
publisher |
Hindawi-Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/8c989fa1f6ff4597adb5774e13801f84 |
work_keys_str_mv |
AT qianxiacao trafficforegrounddetectionatcomplexurbanintersectionsusinganovelbackgrounddictionarylearningmodel AT zhengwuwang trafficforegrounddetectionatcomplexurbanintersectionsusinganovelbackgrounddictionarylearningmodel AT kejunlong trafficforegrounddetectionatcomplexurbanintersectionsusinganovelbackgrounddictionarylearningmodel |
_version_ |
1718418412147834880 |