Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model
In complex urban intersection scenarios, due to heavy traffic and signal control, there are many slow-moving or temporarily stopped vehicles behind the stop lines. At these intersections, it is difficult to extract traffic parameters, such as delay and queue length, based on vehicle detection and tr...
Guardado en:
Autores principales: | Qianxia Cao, Zhengwu Wang, Kejun Long |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c989fa1f6ff4597adb5774e13801f84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Way to Automatically Generate Lane Level Traffic Data from Video in the Intersections
por: Zhongguo Yang, et al.
Publicado: (2021) -
The Impact of Automated Vehicles on Traffic Flow and Road Capacity on Urban Road Networks
por: Ji Eun Park, et al.
Publicado: (2021) -
Study on the Optimization of Hub-and-Spoke Logistics Network regarding Traffic Congestion
por: Wei Xu, et al.
Publicado: (2021) -
Modeling Tourists’ Departure Time considering the Influence of Multisource Traffic Information
por: Shijun Yu, et al.
Publicado: (2021) -
A Deep Reinforcement Learning Approach for Ramp Metering Based on Traffic Video Data
por: Bing Liu, et al.
Publicado: (2021)