Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought.
Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8cadb5a059df4be5b34f86d5e52dbd01 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8cadb5a059df4be5b34f86d5e52dbd01 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8cadb5a059df4be5b34f86d5e52dbd012021-11-18T05:52:34ZComputational phenotyping of two-person interactions reveals differential neural response to depth-of-thought.1553-734X1553-735810.1371/journal.pcbi.1002841https://doaj.org/article/8cadb5a059df4be5b34f86d5e52dbd012012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23300423/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans.Ting XiangDebajyoti RayTerry LohrenzPeter DayanP Read MontaguePublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 8, Iss 12, p e1002841 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Ting Xiang Debajyoti Ray Terry Lohrenz Peter Dayan P Read Montague Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. |
description |
Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans. |
format |
article |
author |
Ting Xiang Debajyoti Ray Terry Lohrenz Peter Dayan P Read Montague |
author_facet |
Ting Xiang Debajyoti Ray Terry Lohrenz Peter Dayan P Read Montague |
author_sort |
Ting Xiang |
title |
Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. |
title_short |
Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. |
title_full |
Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. |
title_fullStr |
Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. |
title_full_unstemmed |
Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. |
title_sort |
computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/8cadb5a059df4be5b34f86d5e52dbd01 |
work_keys_str_mv |
AT tingxiang computationalphenotypingoftwopersoninteractionsrevealsdifferentialneuralresponsetodepthofthought AT debajyotiray computationalphenotypingoftwopersoninteractionsrevealsdifferentialneuralresponsetodepthofthought AT terrylohrenz computationalphenotypingoftwopersoninteractionsrevealsdifferentialneuralresponsetodepthofthought AT peterdayan computationalphenotypingoftwopersoninteractionsrevealsdifferentialneuralresponsetodepthofthought AT preadmontague computationalphenotypingoftwopersoninteractionsrevealsdifferentialneuralresponsetodepthofthought |
_version_ |
1718424743100547072 |