Measuring symmetry, asymmetry and randomness in neural network connectivity.
Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-s...
Guardado en:
Autores principales: | Umberto Esposito, Michele Giugliano, Mark van Rossum, Eleni Vasilaki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8cc0eebff1e74487b7cef61b53bbfdca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses.
por: Eleni Vasilaki, et al.
Publicado: (2014) -
Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations.
por: Paul Richmond, et al.
Publicado: (2011) -
Symmetry perception with spiking neural networks
por: Jonathan K. George, et al.
Publicado: (2021) -
Using Deep Neural Networks for Smoothing Pitch Profiles in Connected Speech
por: Michele Ferro, et al.
Publicado: (2019) -
Symmetry and Asymmetry in the Structure of Temporal Opposition “Past / Future” (based on Media Texts)
por: I. N. Ponomarenko, et al.
Publicado: (2020)