New Properties on Degenerate Bell Polynomials
The aim of this paper is to study the degenerate Bell numbers and polynomials which are degenerate versions of the Bell numbers and polynomials. We derive some new identities and properties of those numbers and polynomials that are associated with the degenerate Stirling numbers of both kinds.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ccc72edb9cf407a94f811dfabce23f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8ccc72edb9cf407a94f811dfabce23f1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8ccc72edb9cf407a94f811dfabce23f12021-11-08T02:37:19ZNew Properties on Degenerate Bell Polynomials1099-052610.1155/2021/7648994https://doaj.org/article/8ccc72edb9cf407a94f811dfabce23f12021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/7648994https://doaj.org/toc/1099-0526The aim of this paper is to study the degenerate Bell numbers and polynomials which are degenerate versions of the Bell numbers and polynomials. We derive some new identities and properties of those numbers and polynomials that are associated with the degenerate Stirling numbers of both kinds.Taekyun KimDae San KimHyunseok LeeSeongho ParkJongkyum KwonHindawi-WileyarticleElectronic computers. Computer scienceQA75.5-76.95ENComplexity, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Electronic computers. Computer science QA75.5-76.95 Taekyun Kim Dae San Kim Hyunseok Lee Seongho Park Jongkyum Kwon New Properties on Degenerate Bell Polynomials |
description |
The aim of this paper is to study the degenerate Bell numbers and polynomials which are degenerate versions of the Bell numbers and polynomials. We derive some new identities and properties of those numbers and polynomials that are associated with the degenerate Stirling numbers of both kinds. |
format |
article |
author |
Taekyun Kim Dae San Kim Hyunseok Lee Seongho Park Jongkyum Kwon |
author_facet |
Taekyun Kim Dae San Kim Hyunseok Lee Seongho Park Jongkyum Kwon |
author_sort |
Taekyun Kim |
title |
New Properties on Degenerate Bell Polynomials |
title_short |
New Properties on Degenerate Bell Polynomials |
title_full |
New Properties on Degenerate Bell Polynomials |
title_fullStr |
New Properties on Degenerate Bell Polynomials |
title_full_unstemmed |
New Properties on Degenerate Bell Polynomials |
title_sort |
new properties on degenerate bell polynomials |
publisher |
Hindawi-Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/8ccc72edb9cf407a94f811dfabce23f1 |
work_keys_str_mv |
AT taekyunkim newpropertiesondegeneratebellpolynomials AT daesankim newpropertiesondegeneratebellpolynomials AT hyunseoklee newpropertiesondegeneratebellpolynomials AT seonghopark newpropertiesondegeneratebellpolynomials AT jongkyumkwon newpropertiesondegeneratebellpolynomials |
_version_ |
1718443019846287360 |