Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress

Abstract Communities of bacteria called biofilms are characterized by reduced diffusion, steep oxygen, and redox gradients and specific properties compared to individualized planktonic bacteria. In this study, we investigated whether signaling via nitrosylation of protein cysteine thiols (S-nitrosyl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicolas Barraud, Sylvie Létoffé, Christophe Beloin, Joelle Vinh, Giovanni Chiappetta, Jean-Marc Ghigo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/8cce5019d40946cfbd047b970d3d64e5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8cce5019d40946cfbd047b970d3d64e5
record_format dspace
spelling oai:doaj.org-article:8cce5019d40946cfbd047b970d3d64e52021-12-02T14:27:54ZLifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress10.1038/s41522-021-00203-w2055-5008https://doaj.org/article/8cce5019d40946cfbd047b970d3d64e52021-04-01T00:00:00Zhttps://doi.org/10.1038/s41522-021-00203-whttps://doaj.org/toc/2055-5008Abstract Communities of bacteria called biofilms are characterized by reduced diffusion, steep oxygen, and redox gradients and specific properties compared to individualized planktonic bacteria. In this study, we investigated whether signaling via nitrosylation of protein cysteine thiols (S-nitrosylation), regulating a wide range of functions in eukaryotes, could also specifically occur in biofilms and contribute to bacterial adaptation to this widespread lifestyle. We used a redox proteomic approach to compare cysteine S-nitrosylation in aerobic and anaerobic biofilm and planktonic Escherichia coli cultures and we identified proteins with biofilm-specific S-nitrosylation status. Using bacterial genetics and various phenotypic screens, we showed that impairing S-nitrosylation in proteins involved in redox homeostasis and amino acid synthesis such as OxyR, KatG, and GltD altered important biofilm properties, including motility, biofilm maturation, or resistance to oxidative stress. Our study therefore revealed that S-nitrosylation constitutes a physiological basis underlying functions critical for E. coli adaptation to the biofilm environment.Nicolas BarraudSylvie LétofféChristophe BeloinJoelle VinhGiovanni ChiappettaJean-Marc GhigoNature PortfolioarticleMicrobial ecologyQR100-130ENnpj Biofilms and Microbiomes, Vol 7, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Microbial ecology
QR100-130
spellingShingle Microbial ecology
QR100-130
Nicolas Barraud
Sylvie Létoffé
Christophe Beloin
Joelle Vinh
Giovanni Chiappetta
Jean-Marc Ghigo
Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress
description Abstract Communities of bacteria called biofilms are characterized by reduced diffusion, steep oxygen, and redox gradients and specific properties compared to individualized planktonic bacteria. In this study, we investigated whether signaling via nitrosylation of protein cysteine thiols (S-nitrosylation), regulating a wide range of functions in eukaryotes, could also specifically occur in biofilms and contribute to bacterial adaptation to this widespread lifestyle. We used a redox proteomic approach to compare cysteine S-nitrosylation in aerobic and anaerobic biofilm and planktonic Escherichia coli cultures and we identified proteins with biofilm-specific S-nitrosylation status. Using bacterial genetics and various phenotypic screens, we showed that impairing S-nitrosylation in proteins involved in redox homeostasis and amino acid synthesis such as OxyR, KatG, and GltD altered important biofilm properties, including motility, biofilm maturation, or resistance to oxidative stress. Our study therefore revealed that S-nitrosylation constitutes a physiological basis underlying functions critical for E. coli adaptation to the biofilm environment.
format article
author Nicolas Barraud
Sylvie Létoffé
Christophe Beloin
Joelle Vinh
Giovanni Chiappetta
Jean-Marc Ghigo
author_facet Nicolas Barraud
Sylvie Létoffé
Christophe Beloin
Joelle Vinh
Giovanni Chiappetta
Jean-Marc Ghigo
author_sort Nicolas Barraud
title Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress
title_short Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress
title_full Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress
title_fullStr Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress
title_full_unstemmed Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress
title_sort lifestyle-specific s-nitrosylation of protein cysteine thiols regulates escherichia coli biofilm formation and resistance to oxidative stress
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8cce5019d40946cfbd047b970d3d64e5
work_keys_str_mv AT nicolasbarraud lifestylespecificsnitrosylationofproteincysteinethiolsregulatesescherichiacolibiofilmformationandresistancetooxidativestress
AT sylvieletoffe lifestylespecificsnitrosylationofproteincysteinethiolsregulatesescherichiacolibiofilmformationandresistancetooxidativestress
AT christophebeloin lifestylespecificsnitrosylationofproteincysteinethiolsregulatesescherichiacolibiofilmformationandresistancetooxidativestress
AT joellevinh lifestylespecificsnitrosylationofproteincysteinethiolsregulatesescherichiacolibiofilmformationandresistancetooxidativestress
AT giovannichiappetta lifestylespecificsnitrosylationofproteincysteinethiolsregulatesescherichiacolibiofilmformationandresistancetooxidativestress
AT jeanmarcghigo lifestylespecificsnitrosylationofproteincysteinethiolsregulatesescherichiacolibiofilmformationandresistancetooxidativestress
_version_ 1718391265245003776