A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients

Numerical simulation of metal cutting with rigorous experimental validation is a profitable approach that facilitates process optimization and better productivity. In this work, we apply the Smoothed Particle Hydrodynamics (SPH) and Finite Element Method (FEM) to simulate the chip formation process...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohamadreza Afrasiabi, Jannis Saelzer, Sebastian Berger, Ivan Iovkov, Hagen Klippel, Matthias Röthlin, Andreas Zabel, Dirk Biermann, Konrad Wegener
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
FEM
Acceso en línea:https://doaj.org/article/8ce121abca3e4dfea441431e36b56fb3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8ce121abca3e4dfea441431e36b56fb3
record_format dspace
spelling oai:doaj.org-article:8ce121abca3e4dfea441431e36b56fb32021-11-25T18:21:11ZA Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients10.3390/met111116832075-4701https://doaj.org/article/8ce121abca3e4dfea441431e36b56fb32021-10-01T00:00:00Zhttps://www.mdpi.com/2075-4701/11/11/1683https://doaj.org/toc/2075-4701Numerical simulation of metal cutting with rigorous experimental validation is a profitable approach that facilitates process optimization and better productivity. In this work, we apply the Smoothed Particle Hydrodynamics (SPH) and Finite Element Method (FEM) to simulate the chip formation process within a thermo-mechanically coupled framework. A series of cutting experiments on two widely-used workpiece materials, i.e., AISI 1045 steel and Ti6Al4V titanium alloy, is conducted for validation purposes. Furthermore, we present a novel technique to measure the rake face temperature without manipulating the chip flow within the experimental framework, which offers a new quality of the experimental validation of thermal loads in orthogonal metal cutting. All material parameters and friction coefficients are identified in-situ, proposing new values for temperature-dependent and velocity-dependent friction coefficients of AISI 1045 and Ti6Al4V under the cutting conditions. Simulation results show that the choice of friction coefficient has a higher impact on SPH forces than FEM. Average errors of force prediction for SPH and FEM were in the range of 33% and 23%, respectively. Except for the rake face temperature of Ti6Al4V, both SPH and FEM provide accurate predictions of thermal loads with 5–20% error.Mohamadreza AfrasiabiJannis SaelzerSebastian BergerIvan IovkovHagen KlippelMatthias RöthlinAndreas ZabelDirk BiermannKonrad WegenerMDPI AGarticlemetal cuttingforcetemperaturefrictionsimulationFEMMining engineering. MetallurgyTN1-997ENMetals, Vol 11, Iss 1683, p 1683 (2021)
institution DOAJ
collection DOAJ
language EN
topic metal cutting
force
temperature
friction
simulation
FEM
Mining engineering. Metallurgy
TN1-997
spellingShingle metal cutting
force
temperature
friction
simulation
FEM
Mining engineering. Metallurgy
TN1-997
Mohamadreza Afrasiabi
Jannis Saelzer
Sebastian Berger
Ivan Iovkov
Hagen Klippel
Matthias Röthlin
Andreas Zabel
Dirk Biermann
Konrad Wegener
A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients
description Numerical simulation of metal cutting with rigorous experimental validation is a profitable approach that facilitates process optimization and better productivity. In this work, we apply the Smoothed Particle Hydrodynamics (SPH) and Finite Element Method (FEM) to simulate the chip formation process within a thermo-mechanically coupled framework. A series of cutting experiments on two widely-used workpiece materials, i.e., AISI 1045 steel and Ti6Al4V titanium alloy, is conducted for validation purposes. Furthermore, we present a novel technique to measure the rake face temperature without manipulating the chip flow within the experimental framework, which offers a new quality of the experimental validation of thermal loads in orthogonal metal cutting. All material parameters and friction coefficients are identified in-situ, proposing new values for temperature-dependent and velocity-dependent friction coefficients of AISI 1045 and Ti6Al4V under the cutting conditions. Simulation results show that the choice of friction coefficient has a higher impact on SPH forces than FEM. Average errors of force prediction for SPH and FEM were in the range of 33% and 23%, respectively. Except for the rake face temperature of Ti6Al4V, both SPH and FEM provide accurate predictions of thermal loads with 5–20% error.
format article
author Mohamadreza Afrasiabi
Jannis Saelzer
Sebastian Berger
Ivan Iovkov
Hagen Klippel
Matthias Röthlin
Andreas Zabel
Dirk Biermann
Konrad Wegener
author_facet Mohamadreza Afrasiabi
Jannis Saelzer
Sebastian Berger
Ivan Iovkov
Hagen Klippel
Matthias Röthlin
Andreas Zabel
Dirk Biermann
Konrad Wegener
author_sort Mohamadreza Afrasiabi
title A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients
title_short A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients
title_full A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients
title_fullStr A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients
title_full_unstemmed A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients
title_sort numerical-experimental study on orthogonal cutting of aisi 1045 steel and ti6al4v alloy: sph and fem modeling with newly identified friction coefficients
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/8ce121abca3e4dfea441431e36b56fb3
work_keys_str_mv AT mohamadrezaafrasiabi anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT jannissaelzer anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT sebastianberger anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT ivaniovkov anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT hagenklippel anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT matthiasrothlin anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT andreaszabel anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT dirkbiermann anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT konradwegener anumericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT mohamadrezaafrasiabi numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT jannissaelzer numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT sebastianberger numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT ivaniovkov numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT hagenklippel numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT matthiasrothlin numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT andreaszabel numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT dirkbiermann numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
AT konradwegener numericalexperimentalstudyonorthogonalcuttingofaisi1045steelandti6al4valloysphandfemmodelingwithnewlyidentifiedfrictioncoefficients
_version_ 1718411270553600000