Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes
Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to t...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ce69ef9e8c246e28e2c9bdaef6552ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8ce69ef9e8c246e28e2c9bdaef6552ee |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8ce69ef9e8c246e28e2c9bdaef6552ee2021-12-01T01:50:06ZAgrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes1664-302X10.3389/fmicb.2021.754486https://doaj.org/article/8ce69ef9e8c246e28e2c9bdaef6552ee2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmicb.2021.754486/fullhttps://doaj.org/toc/1664-302XCell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.Simon CzolkossXenia SafronovSascha RexrothLisa R. KnokeMeriyem AktasFranz NarberhausFrontiers Media S.A.articleAgrobacteriummembrane organizationdetergent-resistant membranestype IV secretion systemtype VI secretion systemmembrane microdomainsMicrobiologyQR1-502ENFrontiers in Microbiology, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Agrobacterium membrane organization detergent-resistant membranes type IV secretion system type VI secretion system membrane microdomains Microbiology QR1-502 |
spellingShingle |
Agrobacterium membrane organization detergent-resistant membranes type IV secretion system type VI secretion system membrane microdomains Microbiology QR1-502 Simon Czolkoss Xenia Safronov Sascha Rexroth Lisa R. Knoke Meriyem Aktas Franz Narberhaus Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes |
description |
Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens. |
format |
article |
author |
Simon Czolkoss Xenia Safronov Sascha Rexroth Lisa R. Knoke Meriyem Aktas Franz Narberhaus |
author_facet |
Simon Czolkoss Xenia Safronov Sascha Rexroth Lisa R. Knoke Meriyem Aktas Franz Narberhaus |
author_sort |
Simon Czolkoss |
title |
Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes |
title_short |
Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes |
title_full |
Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes |
title_fullStr |
Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes |
title_full_unstemmed |
Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes |
title_sort |
agrobacterium tumefaciens type iv and type vi secretion systems reside in detergent-resistant membranes |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/8ce69ef9e8c246e28e2c9bdaef6552ee |
work_keys_str_mv |
AT simonczolkoss agrobacteriumtumefacienstypeivandtypevisecretionsystemsresideindetergentresistantmembranes AT xeniasafronov agrobacteriumtumefacienstypeivandtypevisecretionsystemsresideindetergentresistantmembranes AT sascharexroth agrobacteriumtumefacienstypeivandtypevisecretionsystemsresideindetergentresistantmembranes AT lisarknoke agrobacteriumtumefacienstypeivandtypevisecretionsystemsresideindetergentresistantmembranes AT meriyemaktas agrobacteriumtumefacienstypeivandtypevisecretionsystemsresideindetergentresistantmembranes AT franznarberhaus agrobacteriumtumefacienstypeivandtypevisecretionsystemsresideindetergentresistantmembranes |
_version_ |
1718405974371336192 |