PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
Abstract Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most...
Enregistré dans:
Auteurs principaux: | Shih-Cheng Huang, Tanay Kothari, Imon Banerjee, Chris Chute, Robyn L. Ball, Norah Borus, Andrew Huang, Bhavik N. Patel, Pranav Rajpurkar, Jeremy Irvin, Jared Dunnmon, Joseph Bledsoe, Katie Shpanskaya, Abhay Dhaliwal, Roham Zamanian, Andrew Y. Ng, Matthew P. Lungren |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8ceb4d87e32c41efa595cc53fbb017ec |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
par: Shih-Cheng Huang, et autres
Publié: (2020) -
Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection
par: Shih-Cheng Huang, et autres
Publié: (2020) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
par: Sabri Eyuboglu, et autres
Publié: (2021) -
Volumetric chemical imaging by stimulated Raman projection microscopy and tomography
par: Xueli Chen, et autres
Publié: (2017) -
Compressive Volumetric Light-Field Excitation
par: David C. Schedl, et autres
Publié: (2017)