PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
Abstract Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most...
Guardado en:
Autores principales: | Shih-Cheng Huang, Tanay Kothari, Imon Banerjee, Chris Chute, Robyn L. Ball, Norah Borus, Andrew Huang, Bhavik N. Patel, Pranav Rajpurkar, Jeremy Irvin, Jared Dunnmon, Joseph Bledsoe, Katie Shpanskaya, Abhay Dhaliwal, Roham Zamanian, Andrew Y. Ng, Matthew P. Lungren |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ceb4d87e32c41efa595cc53fbb017ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
por: Sabri Eyuboglu, et al.
Publicado: (2021) -
Volumetric chemical imaging by stimulated Raman projection microscopy and tomography
por: Xueli Chen, et al.
Publicado: (2017) -
Compressive Volumetric Light-Field Excitation
por: David C. Schedl, et al.
Publicado: (2017)