<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory
This article introduces a new type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ceedba3298f42b2b784d74c98c0eceb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This article introduces a new type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular <i>G</i>-metric spaces that is more general than both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular metric spaces and modular <i>G</i>-metric spaces. Some properties are also discussed with examples. A few common fixed point results in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular <i>G</i>-metric spaces are discussed using the “<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mo>*</mo></msub></semantics></math></inline-formula>-class function”, along with some suitable examples to validate the results. Ulam–Hyers stability is used to check the stability of some fixed point results. As applications, the existence and uniqueness of solutions for a particular problem in dynamical programming and a system of nonlinear integral equations are provided. |
---|