<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory
This article introduces a new type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ceedba3298f42b2b784d74c98c0eceb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8ceedba3298f42b2b784d74c98c0eceb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8ceedba3298f42b2b784d74c98c0eceb2021-11-25T19:05:57Z<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory10.3390/sym131120032073-8994https://doaj.org/article/8ceedba3298f42b2b784d74c98c0eceb2021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2003https://doaj.org/toc/2073-8994This article introduces a new type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular <i>G</i>-metric spaces that is more general than both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular metric spaces and modular <i>G</i>-metric spaces. Some properties are also discussed with examples. A few common fixed point results in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular <i>G</i>-metric spaces are discussed using the “<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mo>*</mo></msub></semantics></math></inline-formula>-class function”, along with some suitable examples to validate the results. Ulam–Hyers stability is used to check the stability of some fixed point results. As applications, the existence and uniqueness of solutions for a particular problem in dynamical programming and a system of nonlinear integral equations are provided.Dipankar DasLakshmi Narayan MishraVishnu Narayan MishraHamurabi Gamboa RosalesArvind DhakaFrancisco Eneldo López MonteagudoEdgar González FernándezTania A. Ramirez-delRealMDPI AGarticle<i>C</i>*-class function<i>mGMS</i><i>C</i>*-<i>avMS</i><i>C</i>*-<i>avb-MS</i><i>C</i>*-<i>avGMS</i>Ulam–Hyers stabilityMathematicsQA1-939ENSymmetry, Vol 13, Iss 2003, p 2003 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
<i>C</i>*-class function <i>mGMS</i> <i>C</i>*-<i>avMS</i> <i>C</i>*-<i>avb-MS</i> <i>C</i>*-<i>avGMS</i> Ulam–Hyers stability Mathematics QA1-939 |
spellingShingle |
<i>C</i>*-class function <i>mGMS</i> <i>C</i>*-<i>avMS</i> <i>C</i>*-<i>avb-MS</i> <i>C</i>*-<i>avGMS</i> Ulam–Hyers stability Mathematics QA1-939 Dipankar Das Lakshmi Narayan Mishra Vishnu Narayan Mishra Hamurabi Gamboa Rosales Arvind Dhaka Francisco Eneldo López Monteagudo Edgar González Fernández Tania A. Ramirez-delReal <i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory |
description |
This article introduces a new type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular <i>G</i>-metric spaces that is more general than both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular metric spaces and modular <i>G</i>-metric spaces. Some properties are also discussed with examples. A few common fixed point results in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued modular <i>G</i>-metric spaces are discussed using the “<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mo>*</mo></msub></semantics></math></inline-formula>-class function”, along with some suitable examples to validate the results. Ulam–Hyers stability is used to check the stability of some fixed point results. As applications, the existence and uniqueness of solutions for a particular problem in dynamical programming and a system of nonlinear integral equations are provided. |
format |
article |
author |
Dipankar Das Lakshmi Narayan Mishra Vishnu Narayan Mishra Hamurabi Gamboa Rosales Arvind Dhaka Francisco Eneldo López Monteagudo Edgar González Fernández Tania A. Ramirez-delReal |
author_facet |
Dipankar Das Lakshmi Narayan Mishra Vishnu Narayan Mishra Hamurabi Gamboa Rosales Arvind Dhaka Francisco Eneldo López Monteagudo Edgar González Fernández Tania A. Ramirez-delReal |
author_sort |
Dipankar Das |
title |
<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory |
title_short |
<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory |
title_full |
<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory |
title_fullStr |
<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory |
title_full_unstemmed |
<i>C</i>*-Algebra Valued Modular <i>G</i>-Metric Spaces with Applications in Fixed Point Theory |
title_sort |
<i>c</i>*-algebra valued modular <i>g</i>-metric spaces with applications in fixed point theory |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/8ceedba3298f42b2b784d74c98c0eceb |
work_keys_str_mv |
AT dipankardas icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory AT lakshminarayanmishra icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory AT vishnunarayanmishra icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory AT hamurabigamboarosales icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory AT arvinddhaka icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory AT franciscoeneldolopezmonteagudo icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory AT edgargonzalezfernandez icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory AT taniaaramirezdelreal icialgebravaluedmodularigimetricspaceswithapplicationsinfixedpointtheory |
_version_ |
1718410289330782208 |