Continuous Human Activity Recognition through Parallelism LSTM with Multi-Frequency Spectrograms
According to the real-living environment, radar-based human activity recognition (HAR) is dedicated to recognizing and classifying a sequence of activities rather than individual activities, thereby drawing more attention in practical applications of security surveillance, health care and human–comp...
Guardado en:
Autores principales: | Congzhang Ding, Yong Jia, Guolong Cui, Chuan Chen, Xiaoling Zhong, Yong Guo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8cfaa2c44fdd4ec3bf637f91d8ea5d7c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalized Spectrograms and t -Wigner Transforms
por: PAOLO,BOGGIATTO, et al.
Publicado: (2010) -
A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition
por: Huiyun Zhang, et al.
Publicado: (2021) -
Bird Species Identification Using Spectrogram Based on Multi-Channel Fusion of DCNNs
por: Feiyu Zhang, et al.
Publicado: (2021) -
An Underwater Acoustic Target Recognition Method Based on Spectrograms with Different Resolutions
por: Xinwei Luo, et al.
Publicado: (2021) -
Frog calling activity detection using lightweight CNN with multi-view spectrogram: A case study on Kroombit tinker frog
por: Jie Xie, et al.
Publicado: (2022)