Brain-inspired replay for continual learning with artificial neural networks
One challenge that faces artificial intelligence is the inability of deep neural networks to continuously learn new information without catastrophically forgetting what has been learnt before. To solve this problem, here the authors propose a replay-based algorithm for deep learning without the need...
Guardado en:
Autores principales: | Gido M. van de Ven, Hava T. Siegelmann, Andreas S. Tolias |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8cfc2c14df744076b19bf66597cf0559 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
por: Decebal Constantin Mocanu, et al.
Publicado: (2018) -
Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
por: G. Pedretti, et al.
Publicado: (2017) -
Coexistence Scheme for Uncoordinated LTE and WiFi Networks Using Experience Replay Based Q-Learning
por: Merkebu Girmay, et al.
Publicado: (2021) -
A critique of pure learning and what artificial neural networks can learn from animal brains
por: Anthony M. Zador
Publicado: (2019) -
BRAIN-INSPIRED SPIKING NEURAL NETWORKS FOR WI-FI BASED HUMAN ACTIVITY RECOGNITION
por: Yee Leong Tan, et al.
Publicado: (2021)