Author Correction: Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
Guardado en:
Autores principales: | Keiichi Inoue, Masayuki Karasuyama, Ryoko Nakamura, Masae Konno, Daichi Yamada, Kentaro Mannen, Takashi Nagata, Yu Inatsu, Hiromu Yawo, Kei Yura, Oded Béjà, Hideki Kandori, Ichiro Takeuchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d010b8059064fb49a1c945ab2876721 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
por: Keiichi Inoue, et al.
Publicado: (2021) -
Understanding Colour Tuning Rules and Predicting Absorption Wavelengths of Microbial Rhodopsins by Data-Driven Machine-Learning Approach
por: Masayuki Karasuyama, et al.
Publicado: (2018) -
Red-shifting mutation of light-driven sodium-pump rhodopsin
por: Keiichi Inoue, et al.
Publicado: (2019) -
Structural insights into the mechanism of rhodopsin phosphodiesterase
por: Tatsuya Ikuta, et al.
Publicado: (2020) -
One rhodopsin per photoreceptor: Iro-C genes break the rule.
por: Doekele G Stavenga, et al.
Publicado: (2008)