Combining machine learning and conventional statistical approaches for risk factor discovery in a large cohort study
Abstract We present a simple and efficient hypothesis-free machine learning pipeline for risk factor discovery that accounts for non-linearity and interaction in large biomedical databases with minimal variable pre-processing. In this study, mortality models were built using gradient boosting decisi...
Guardado en:
Autores principales: | Iqbal Madakkatel, Ang Zhou, Mark D. McDonnell, Elina Hyppönen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d07dd6dd43b4072bad55c2c9fa43b2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unifying information theory and machine learning in a model of electrode discrimination in cochlear implants.
por: Xiao Gao, et al.
Publicado: (2021) -
Machine learning for chemical discovery
por: Alexandre Tkatchenko
Publicado: (2020) -
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
por: Alexander Kuc, et al.
Publicado: (2021) -
Positive impact of short-term gait rehabilitation in Parkinson patients: a combined approach based on statistics and machine learning
por: Leandro Donisi, et al.
Publicado: (2021) -
Machine learning guided aptamer refinement and discovery
por: Ali Bashir, et al.
Publicado: (2021)