Combining machine learning and conventional statistical approaches for risk factor discovery in a large cohort study

Abstract We present a simple and efficient hypothesis-free machine learning pipeline for risk factor discovery that accounts for non-linearity and interaction in large biomedical databases with minimal variable pre-processing. In this study, mortality models were built using gradient boosting decisi...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Iqbal Madakkatel, Ang Zhou, Mark D. McDonnell, Elina Hyppönen
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/8d07dd6dd43b4072bad55c2c9fa43b2b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!