Fine-grained classification based on multi-scale pyramid convolution networks.
The large intra-class variance and small inter-class variance are the key factor affecting fine-grained image classification. Recently, some algorithms have been more accurate and efficient. However, these methods ignore the multi-scale information of the network, resulting in insufficient ability t...
Guardado en:
Autores principales: | Gaihua Wang, Lei Cheng, Jinheng Lin, Yingying Dai, Tianlun Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d07f016ed4944ba9cbdc2365f63a4df |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MFP‐Net: Multi‐scale feature pyramid network for crowd counting
por: Tao Lei, et al.
Publicado: (2021) -
CA‐PMG: Channel attention and progressive multi‐granularity training network for fine‐grained visual classification
por: Peipei Zhao, et al.
Publicado: (2021) -
Multi-Level Refinement Feature Pyramid Network for Scale Imbalance Object Detection
por: Lubna Aziz, et al.
Publicado: (2021) -
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
por: Zhi Geng, et al.
Publicado: (2020) -
Comparing recurrent convolutional neural networks for large scale bird species classification
por: Gaurav Gupta, et al.
Publicado: (2021)