Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China
Ecological networks are commonly applied to depict general patterns of biotic interactions, which provide tools to understand the mechanism of community assembly. Commensal interactions between epiphytes and their hosts are a major component of species interactions in forest canopies; however, few s...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d0c0cbbe1a24718b560aa66cea10002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8d0c0cbbe1a24718b560aa66cea10002 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8d0c0cbbe1a24718b560aa66cea100022021-11-30T12:20:13ZStructuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China2624-893X10.3389/ffgc.2021.716278https://doaj.org/article/8d0c0cbbe1a24718b560aa66cea100022021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/ffgc.2021.716278/fullhttps://doaj.org/toc/2624-893XEcological networks are commonly applied to depict general patterns of biotic interactions, which provide tools to understand the mechanism of community assembly. Commensal interactions between epiphytes and their hosts are a major component of species interactions in forest canopies; however, few studies have investigated species assemblage patterns and network structures of epiphyte–host interactions, particularly non-vascular epiphytes in different types of forest. To analyze the characteristics of network structures between epiphytes and their hosts, composition and distribution of epiphytic bryophytes were investigated from 138 host individuals using canopy cranes in a tropical lowland seasonal rain forest (TRF) and a subtropical montane moist evergreen broad-leaved forest (STF), in Southwest China. We structured binary networks between epiphytic bryophytes and their hosts in these two forests, which presented 329 interactions in the TRF and 545 interactions in the STF. Compared to TRF, the bryophyte–host plant networks were more nested but less modular in the STF. However, both forests generally exhibited a significantly nested structure with low levels of specialization and modularity. The relatively high nestedness may stabilize the ecological networks between epiphytic bryophytes and their hosts. Nevertheless, the low modularity in epiphyte–host networks could be attributed to the lack of co-evolutionary processes, and the low degree of specialization suggests that epiphytes are less likely to colonize specific host species. Vertical distribution of the bryophyte species showed structured modules in the tree basal and crown zones, probably attributing to the adaptation to microclimates within a host individual. This study highlights the nested structure of commensal interaction between epiphytic bryophytes and host trees, and provides a scientific basis to identify key host tree species for conservation and management of biodiversity in forest ecosystems.Hai-Xia HuHai-Xia HuHai-Xia HuTing ShenDong-Li QuanAkihiro NakamuraAkihiro NakamuraLiang SongLiang SongLiang SongFrontiers Media S.A.articlecommensal interactionepiphytemodularitynestednessspecializationForestrySD1-669.5Environmental sciencesGE1-350ENFrontiers in Forests and Global Change, Vol 4 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
commensal interaction epiphyte modularity nestedness specialization Forestry SD1-669.5 Environmental sciences GE1-350 |
spellingShingle |
commensal interaction epiphyte modularity nestedness specialization Forestry SD1-669.5 Environmental sciences GE1-350 Hai-Xia Hu Hai-Xia Hu Hai-Xia Hu Ting Shen Dong-Li Quan Akihiro Nakamura Akihiro Nakamura Liang Song Liang Song Liang Song Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China |
description |
Ecological networks are commonly applied to depict general patterns of biotic interactions, which provide tools to understand the mechanism of community assembly. Commensal interactions between epiphytes and their hosts are a major component of species interactions in forest canopies; however, few studies have investigated species assemblage patterns and network structures of epiphyte–host interactions, particularly non-vascular epiphytes in different types of forest. To analyze the characteristics of network structures between epiphytes and their hosts, composition and distribution of epiphytic bryophytes were investigated from 138 host individuals using canopy cranes in a tropical lowland seasonal rain forest (TRF) and a subtropical montane moist evergreen broad-leaved forest (STF), in Southwest China. We structured binary networks between epiphytic bryophytes and their hosts in these two forests, which presented 329 interactions in the TRF and 545 interactions in the STF. Compared to TRF, the bryophyte–host plant networks were more nested but less modular in the STF. However, both forests generally exhibited a significantly nested structure with low levels of specialization and modularity. The relatively high nestedness may stabilize the ecological networks between epiphytic bryophytes and their hosts. Nevertheless, the low modularity in epiphyte–host networks could be attributed to the lack of co-evolutionary processes, and the low degree of specialization suggests that epiphytes are less likely to colonize specific host species. Vertical distribution of the bryophyte species showed structured modules in the tree basal and crown zones, probably attributing to the adaptation to microclimates within a host individual. This study highlights the nested structure of commensal interaction between epiphytic bryophytes and host trees, and provides a scientific basis to identify key host tree species for conservation and management of biodiversity in forest ecosystems. |
format |
article |
author |
Hai-Xia Hu Hai-Xia Hu Hai-Xia Hu Ting Shen Dong-Li Quan Akihiro Nakamura Akihiro Nakamura Liang Song Liang Song Liang Song |
author_facet |
Hai-Xia Hu Hai-Xia Hu Hai-Xia Hu Ting Shen Dong-Li Quan Akihiro Nakamura Akihiro Nakamura Liang Song Liang Song Liang Song |
author_sort |
Hai-Xia Hu |
title |
Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China |
title_short |
Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China |
title_full |
Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China |
title_fullStr |
Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China |
title_full_unstemmed |
Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China |
title_sort |
structuring interaction networks between epiphytic bryophytes and their hosts in yunnan, sw china |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/8d0c0cbbe1a24718b560aa66cea10002 |
work_keys_str_mv |
AT haixiahu structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT haixiahu structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT haixiahu structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT tingshen structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT dongliquan structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT akihironakamura structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT akihironakamura structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT liangsong structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT liangsong structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina AT liangsong structuringinteractionnetworksbetweenepiphyticbryophytesandtheirhostsinyunnanswchina |
_version_ |
1718406634417422336 |