Cell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis

ABSTRACT Aspergillus fumigatus can cause a variety of lung diseases in immunocompromised patients, including life-threatening invasive aspergillosis. There are only three main classes of antifungal drugs currently used to treat aspergillosis, and antifungal resistance is increasing. Experimental res...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Robert-Jan Bleichrodt, Peter Foster, Gareth Howell, Jean-Paul Latgé, Nick D. Read
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/8d1649596b1f40b89a9096a99ef72b1f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8d1649596b1f40b89a9096a99ef72b1f
record_format dspace
spelling oai:doaj.org-article:8d1649596b1f40b89a9096a99ef72b1f2021-11-15T15:56:46ZCell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis10.1128/mBio.03015-192150-7511https://doaj.org/article/8d1649596b1f40b89a9096a99ef72b1f2020-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.03015-19https://doaj.org/toc/2150-7511ABSTRACT Aspergillus fumigatus can cause a variety of lung diseases in immunocompromised patients, including life-threatening invasive aspergillosis. There are only three main classes of antifungal drugs currently used to treat aspergillosis, and antifungal resistance is increasing. Experimental results in fungal biology research are usually obtained as average measurements across whole populations while ignoring what is happening at the single cell level. In this study, we show that conidia with the same genetic background in the same cell population at a similar developmental stage show heterogeneity in their cell wall labeling at the single cell level. We present a rigorous statistical method, newly applied to quantify the level of cell heterogeneity, which allows for direct comparison of the heterogeneity observed between treatments. We show the extent of cell wall labeling heterogeneity in dormant conidia and how the level of heterogeneity changes during germination. The degree of heterogeneity is influenced by deletions of cell wall synthesizing genes and environmental conditions, including medium composition, method of inoculation, age of conidia, and the presence of antifungals. This heterogeneity results in subpopulations of germinating conidia with heterogeneous fitness to the antifungal caspofungin, which targets cell wall synthesis and heterogeneous sensitivity of dormant conidia to phagocytosis by macrophages. IMPORTANCE The fungus Aspergillus fumigatus can cause invasive lung diseases in immunocompromised patients resulting in high mortality. Treatment using antifungal compounds is often unsuccessful. Average population measurements hide what is happening at the individual cell level. We set out to test what impact individual differences between the cell walls of fungal conidia have on their behavior. We show that a population of cells having the same genetic background gives rise to subpopulations of cells that exhibit distinct behavior (phenotypic heterogeneity). This cell heterogeneity is dependent on the strain type, gene deletions, cell age, and environmental conditions. By looking at the individual cell level, we discovered subpopulations of cells that show differential fitness during antifungal treatment and uptake by immune cells.Robert-Jan BleichrodtPeter FosterGareth HowellJean-Paul LatgéNick D. ReadAmerican Society for MicrobiologyarticleAspergillus fumigatusfungal diseasessingle cellcell heterogeneityphenotypic heterogeneitycell wall compositionMicrobiologyQR1-502ENmBio, Vol 11, Iss 3 (2020)
institution DOAJ
collection DOAJ
language EN
topic Aspergillus fumigatus
fungal diseases
single cell
cell heterogeneity
phenotypic heterogeneity
cell wall composition
Microbiology
QR1-502
spellingShingle Aspergillus fumigatus
fungal diseases
single cell
cell heterogeneity
phenotypic heterogeneity
cell wall composition
Microbiology
QR1-502
Robert-Jan Bleichrodt
Peter Foster
Gareth Howell
Jean-Paul Latgé
Nick D. Read
Cell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis
description ABSTRACT Aspergillus fumigatus can cause a variety of lung diseases in immunocompromised patients, including life-threatening invasive aspergillosis. There are only three main classes of antifungal drugs currently used to treat aspergillosis, and antifungal resistance is increasing. Experimental results in fungal biology research are usually obtained as average measurements across whole populations while ignoring what is happening at the single cell level. In this study, we show that conidia with the same genetic background in the same cell population at a similar developmental stage show heterogeneity in their cell wall labeling at the single cell level. We present a rigorous statistical method, newly applied to quantify the level of cell heterogeneity, which allows for direct comparison of the heterogeneity observed between treatments. We show the extent of cell wall labeling heterogeneity in dormant conidia and how the level of heterogeneity changes during germination. The degree of heterogeneity is influenced by deletions of cell wall synthesizing genes and environmental conditions, including medium composition, method of inoculation, age of conidia, and the presence of antifungals. This heterogeneity results in subpopulations of germinating conidia with heterogeneous fitness to the antifungal caspofungin, which targets cell wall synthesis and heterogeneous sensitivity of dormant conidia to phagocytosis by macrophages. IMPORTANCE The fungus Aspergillus fumigatus can cause invasive lung diseases in immunocompromised patients resulting in high mortality. Treatment using antifungal compounds is often unsuccessful. Average population measurements hide what is happening at the individual cell level. We set out to test what impact individual differences between the cell walls of fungal conidia have on their behavior. We show that a population of cells having the same genetic background gives rise to subpopulations of cells that exhibit distinct behavior (phenotypic heterogeneity). This cell heterogeneity is dependent on the strain type, gene deletions, cell age, and environmental conditions. By looking at the individual cell level, we discovered subpopulations of cells that show differential fitness during antifungal treatment and uptake by immune cells.
format article
author Robert-Jan Bleichrodt
Peter Foster
Gareth Howell
Jean-Paul Latgé
Nick D. Read
author_facet Robert-Jan Bleichrodt
Peter Foster
Gareth Howell
Jean-Paul Latgé
Nick D. Read
author_sort Robert-Jan Bleichrodt
title Cell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis
title_short Cell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis
title_full Cell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis
title_fullStr Cell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis
title_full_unstemmed Cell Wall Composition Heterogeneity between Single Cells in <named-content content-type="genus-species">Aspergillus fumigatus</named-content> Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis
title_sort cell wall composition heterogeneity between single cells in <named-content content-type="genus-species">aspergillus fumigatus</named-content> leads to heterogeneous behavior during antifungal treatment and phagocytosis
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/8d1649596b1f40b89a9096a99ef72b1f
work_keys_str_mv AT robertjanbleichrodt cellwallcompositionheterogeneitybetweensinglecellsinnamedcontentcontenttypegenusspeciesaspergillusfumigatusnamedcontentleadstoheterogeneousbehaviorduringantifungaltreatmentandphagocytosis
AT peterfoster cellwallcompositionheterogeneitybetweensinglecellsinnamedcontentcontenttypegenusspeciesaspergillusfumigatusnamedcontentleadstoheterogeneousbehaviorduringantifungaltreatmentandphagocytosis
AT garethhowell cellwallcompositionheterogeneitybetweensinglecellsinnamedcontentcontenttypegenusspeciesaspergillusfumigatusnamedcontentleadstoheterogeneousbehaviorduringantifungaltreatmentandphagocytosis
AT jeanpaullatge cellwallcompositionheterogeneitybetweensinglecellsinnamedcontentcontenttypegenusspeciesaspergillusfumigatusnamedcontentleadstoheterogeneousbehaviorduringantifungaltreatmentandphagocytosis
AT nickdread cellwallcompositionheterogeneitybetweensinglecellsinnamedcontentcontenttypegenusspeciesaspergillusfumigatusnamedcontentleadstoheterogeneousbehaviorduringantifungaltreatmentandphagocytosis
_version_ 1718427103940050944