Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints

The purpose of this paper is to study multiobjective semi-infinite programming with equilibrium constraints. Firstly, the necessary and sufficient Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming with equilibrium constraints are established. Then, we formulate ty...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Le Thanh Tung
Formato: article
Lenguaje:EN
Publicado: University of Belgrade 2021
Materias:
Acceso en línea:https://doaj.org/article/8d16ca9e2bd4469fb063abae198d32af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8d16ca9e2bd4469fb063abae198d32af
record_format dspace
spelling oai:doaj.org-article:8d16ca9e2bd4469fb063abae198d32af2021-12-01T13:00:33ZKarush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints0354-02431820-743X10.2298/YJOR200117024Lhttps://doaj.org/article/8d16ca9e2bd4469fb063abae198d32af2021-01-01T00:00:00Zhttp://www.doiserbia.nb.rs/img/doi/0354-0243/2021/0354-02432000024L.pdfhttps://doaj.org/toc/0354-0243https://doaj.org/toc/1820-743XThe purpose of this paper is to study multiobjective semi-infinite programming with equilibrium constraints. Firstly, the necessary and sufficient Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming with equilibrium constraints are established. Then, we formulate types of Wolfe and Mond-Weir dual problems and investigate duality relations under convexity assumptions. Some examples are given to verify our results.Le Thanh TungUniversity of Belgradearticlemultiobjective semi-infinite programmingequilibrium constraintsconstraint qualificationskarush-kuhn-tucker optimality conditionsmond-weir dualitywolfe dualityManagement information systemsT58.6-58.62ENYugoslav Journal of Operations Research, Vol 31, Iss 4, Pp 429-453 (2021)
institution DOAJ
collection DOAJ
language EN
topic multiobjective semi-infinite programming
equilibrium constraints
constraint qualifications
karush-kuhn-tucker optimality conditions
mond-weir duality
wolfe duality
Management information systems
T58.6-58.62
spellingShingle multiobjective semi-infinite programming
equilibrium constraints
constraint qualifications
karush-kuhn-tucker optimality conditions
mond-weir duality
wolfe duality
Management information systems
T58.6-58.62
Le Thanh Tung
Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
description The purpose of this paper is to study multiobjective semi-infinite programming with equilibrium constraints. Firstly, the necessary and sufficient Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming with equilibrium constraints are established. Then, we formulate types of Wolfe and Mond-Weir dual problems and investigate duality relations under convexity assumptions. Some examples are given to verify our results.
format article
author Le Thanh Tung
author_facet Le Thanh Tung
author_sort Le Thanh Tung
title Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
title_short Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
title_full Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
title_fullStr Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
title_full_unstemmed Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
title_sort karush-kuhn-tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
publisher University of Belgrade
publishDate 2021
url https://doaj.org/article/8d16ca9e2bd4469fb063abae198d32af
work_keys_str_mv AT lethanhtung karushkuhntuckeroptimalityconditionsanddualityformultiobjectivesemiinfiniteprogrammingwithequilibriumconstraints
_version_ 1718405186246934528