The assessment of the usability of selected instrumental techniques for the elemental analysis of biomedical samples

Abstract The fundamental role of major, minor and trace elements in different physiological and pathological processes occurring in living organism makes that elemental analysis of biomedical samples becomes more and more popular issue. The most often used tools for analysis of the elemental composi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Karolina Planeta, Aldona Kubala-Kukus, Agnieszka Drozdz, Katarzyna Matusiak, Zuzanna Setkowicz, Joanna Chwiej
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8d2269da35434485a8210c0faf4c501d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The fundamental role of major, minor and trace elements in different physiological and pathological processes occurring in living organism makes that elemental analysis of biomedical samples becomes more and more popular issue. The most often used tools for analysis of the elemental composition of biological samples include Flame and Graphite Furnace Atomic Absorption Spectroscopy (F-AAS and GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Each of these techniques has many advantages and limitations that should be considered in the first stage of planning the measurement procedure. Their reliability can be checked in the validation process and the precision, trueness and detection limits of elements belong to the most frequently determined validation parameters. The main purpose of this paper was the discussion of selected instrumental techniques (F-AAS, GF-AAS, ICP-OES and ICP-MS) in term of the achieved validation parameters and the usefulness in the analysis of biological samples. The focus in the detailed literature studies was also put on the methods of preparation of the biomedical samples. What is more based on the own data the usefulness of the total reflection X-ray fluorescence spectroscopy for the elemental analysis of animal tissues was examined. The detection limits of elements, precision and trueness for the technique were determined and compared with the literature data concerning other of the discussed techniques of elemental analysis. Reassuming, the following paper is to serve as a guide and comprehensive source of information concerning the validation parameters achievable in different instrumental techniques used for the elemental analysis of biomedical samples.