Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design

Abstract This study aims to demonstrate the feasibility of metamaterial application in absorption reduction of 5G electromagnetic (EM) energy in the human head tissue. In a general sense, the radio frequency (RF) energy that received by wireless mobile phone from the base station, will emit to surro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tayaallen Ramachandran, Mohammad Rashed Iqbal Faruque, Air Mohammad Siddiky, Mohammad Tariqul Islam
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8d2901119e8a42d4b06444113f76ae3c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8d2901119e8a42d4b06444113f76ae3c
record_format dspace
spelling oai:doaj.org-article:8d2901119e8a42d4b06444113f76ae3c2021-12-02T14:16:42ZReduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design10.1038/s41598-021-82105-72045-2322https://doaj.org/article/8d2901119e8a42d4b06444113f76ae3c2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82105-7https://doaj.org/toc/2045-2322Abstract This study aims to demonstrate the feasibility of metamaterial application in absorption reduction of 5G electromagnetic (EM) energy in the human head tissue. In a general sense, the radio frequency (RF) energy that received by wireless mobile phone from the base station, will emit to surrounding when the devices are in active mode. Since the latest fifth generation technology standard for cellular networks is upon us, the emission of radiation from any wireless devices needs to be taken into consideration. This motivation helps to prepare this paper that focuses on construction of novel and compact square-shaped metamaterial (SM) design to reduce electromagnetic exposure to humans. The commercially available substrate material known as FR-4 with thickness of 1.6 mm was selected to place the metamaterial design on it. The electromagnetic properties and Specific Absorption Rate (SAR) analyses were carried out numerically by utilising high-performance 3D EM analysis, Computer Simulation Technology Studio (CST) software. Meanwhile, for the validation purpose, the metamaterial designs for both unit and array cells were fabricated to measure the electromagnetic properties of the material. From the numerical simulation, the introduced SM design manifested quadruple resonance frequencies in multi bands precisely at 1.246 (at L-band), 3.052, 3.794 (at S-band), and 4.858 (C-band) GHz. However, the comparison of numerically simulated and measured data reveals a slight difference between them where only the second resonance frequency was decreased by 0.009 GHz while other frequencies were increased by 0.002, 0.045, and 0.117 GHz in sequential order. Moreover, the SAR analysis recorded high values at 3.794 GHz with 61.16% and 70.33% for 1 g and 10 g of tissue volumes, respectively. Overall, our results demonstrate strong SAR reduction effects, and the proposed SM design may be considered a promising aspect in the telecommunication field.Tayaallen RamachandranMohammad Rashed Iqbal FaruqueAir Mohammad SiddikyMohammad Tariqul IslamNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-22 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tayaallen Ramachandran
Mohammad Rashed Iqbal Faruque
Air Mohammad Siddiky
Mohammad Tariqul Islam
Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design
description Abstract This study aims to demonstrate the feasibility of metamaterial application in absorption reduction of 5G electromagnetic (EM) energy in the human head tissue. In a general sense, the radio frequency (RF) energy that received by wireless mobile phone from the base station, will emit to surrounding when the devices are in active mode. Since the latest fifth generation technology standard for cellular networks is upon us, the emission of radiation from any wireless devices needs to be taken into consideration. This motivation helps to prepare this paper that focuses on construction of novel and compact square-shaped metamaterial (SM) design to reduce electromagnetic exposure to humans. The commercially available substrate material known as FR-4 with thickness of 1.6 mm was selected to place the metamaterial design on it. The electromagnetic properties and Specific Absorption Rate (SAR) analyses were carried out numerically by utilising high-performance 3D EM analysis, Computer Simulation Technology Studio (CST) software. Meanwhile, for the validation purpose, the metamaterial designs for both unit and array cells were fabricated to measure the electromagnetic properties of the material. From the numerical simulation, the introduced SM design manifested quadruple resonance frequencies in multi bands precisely at 1.246 (at L-band), 3.052, 3.794 (at S-band), and 4.858 (C-band) GHz. However, the comparison of numerically simulated and measured data reveals a slight difference between them where only the second resonance frequency was decreased by 0.009 GHz while other frequencies were increased by 0.002, 0.045, and 0.117 GHz in sequential order. Moreover, the SAR analysis recorded high values at 3.794 GHz with 61.16% and 70.33% for 1 g and 10 g of tissue volumes, respectively. Overall, our results demonstrate strong SAR reduction effects, and the proposed SM design may be considered a promising aspect in the telecommunication field.
format article
author Tayaallen Ramachandran
Mohammad Rashed Iqbal Faruque
Air Mohammad Siddiky
Mohammad Tariqul Islam
author_facet Tayaallen Ramachandran
Mohammad Rashed Iqbal Faruque
Air Mohammad Siddiky
Mohammad Tariqul Islam
author_sort Tayaallen Ramachandran
title Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design
title_short Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design
title_full Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design
title_fullStr Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design
title_full_unstemmed Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design
title_sort reduction of 5g cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8d2901119e8a42d4b06444113f76ae3c
work_keys_str_mv AT tayaallenramachandran reductionof5gcellularnetworkradiationinwirelessmobilephoneusinganasymmetricsquareshapedpassivemetamaterialdesign
AT mohammadrashediqbalfaruque reductionof5gcellularnetworkradiationinwirelessmobilephoneusinganasymmetricsquareshapedpassivemetamaterialdesign
AT airmohammadsiddiky reductionof5gcellularnetworkradiationinwirelessmobilephoneusinganasymmetricsquareshapedpassivemetamaterialdesign
AT mohammadtariqulislam reductionof5gcellularnetworkradiationinwirelessmobilephoneusinganasymmetricsquareshapedpassivemetamaterialdesign
_version_ 1718391680324861952