Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor
As a non-invasive, low-cost medical imaging technology, magnetic resonance imaging (MRI) has become an important tool for brain tumor diagnosis. Many scholars have carried out some related researches on MRI brain tumor segmentation based on deep convolutional neural networks, and have achieved good...
Guardado en:
Autores principales: | Xueqin He, Wenjie Xu, Jane Yang, Jianyao Mao, Sifang Chen, Zhanxiang Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d2e0e3645d74b22ae74c975c9cedc4b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of wavelet transformations to enhance convolutional neural network performance in brain tumor segmentation
por: Mohamadreza Hajiabadi, et al.
Publicado: (2021) -
Concatenated Residual Attention UNet for Semantic Segmentation of Urban Green Space
por: Guoqiang Men, et al.
Publicado: (2021) -
A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
por: Saüc Abadal, et al.
Publicado: (2021) -
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
por: Udit Sharma, et al.
Publicado: (2021) -
Application of Deep Learning in Petrographic Coal Images Segmentation
por: Sebastian Iwaszenko, et al.
Publicado: (2021)