A method for magnetocardiography functional localization based on boundary element method and Nelder–Mead simplex algorithm

Abstract Background The magnetocardiography (MCG) functional localization can transfer the biomagnetic signal to the electrical activity information inside the heart. The electrical activity is directly related to the physiological function of the heart. Methods This study proposes a practical metho...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhihong Lu, Dingsong Jiang, Jianzhong Yang
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/8d34b4ec047b443cbfb43ac19859c957
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background The magnetocardiography (MCG) functional localization can transfer the biomagnetic signal to the electrical activity information inside the heart. The electrical activity is directly related to the physiological function of the heart. Methods This study proposes a practical method for MCG functional localization based on the boundary element method (BEM) and the Nelder–Mead (NM) simplex algorithm. Single equivalent moving current dipole (SEMCD) is served as the equivalent cardiac source. The parameters of SEMCD are adapted using the NM simplex algorithm by fitting the measured MCG with the calculated MCG obtained based on BEM. The SEMCD parameters are solved in the sense that the difference between measured and calculated MCG is minimized. Results The factors affecting the localization accuracy of this BEM–NM method were first explored with synthetic signals. Then, the results with real MCG signals show a good agreement between the SEMCD location and the region where ventricle depolarization starts, demonstrating the feasibility of this idea. Conclusions This is the first three‐dimensional localization of the onset of ventricular depolarization with the BEM–NM method. The method is promising in the noninvasive localization of lesions for heart diseases.