A Sparse Transformer-Based Approach for Image Captioning
Image Captioning is the task of providing a natural language description for an image. It has caught significant amounts of attention from both computer vision and natural language processing communities. Most image captioning models adopt deep encoder-decoder architectures to achieve state-of-the-a...
Guardado en:
Autores principales: | Zhou Lei, Congcong Zhou, Shengbo Chen, Yiyong Huang, Xianrui Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d37acadce0441f6b826f861c201713c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Scientometric Visualization Analysis of Image Captioning Research From 2010 to 2020
por: Wenxuan Liu, et al.
Publicado: (2021) -
A Systematic Survey of Remote Sensing Image Captioning
por: Beigeng Zhao
Publicado: (2021) -
Medical Image Captioning Model to Convey More Details: Methodological Comparison of Feature Difference Generation
por: Hyeryun Park, et al.
Publicado: (2021) -
Building Extraction from Remote Sensing Images with Sparse Token Transformers
por: Keyan Chen, et al.
Publicado: (2021) -
Sparse Reconstruction for Near-Field MIMO Radar Imaging Using Fast Multipole Method
por: Emre A. Miran, et al.
Publicado: (2021)