A Sparse Transformer-Based Approach for Image Captioning
Image Captioning is the task of providing a natural language description for an image. It has caught significant amounts of attention from both computer vision and natural language processing communities. Most image captioning models adopt deep encoder-decoder architectures to achieve state-of-the-a...
Enregistré dans:
Auteurs principaux: | Zhou Lei, Congcong Zhou, Shengbo Chen, Yiyong Huang, Xianrui Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8d37acadce0441f6b826f861c201713c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Scientometric Visualization Analysis of Image Captioning Research From 2010 to 2020
par: Wenxuan Liu, et autres
Publié: (2021) -
A Systematic Survey of Remote Sensing Image Captioning
par: Beigeng Zhao
Publié: (2021) -
Medical Image Captioning Model to Convey More Details: Methodological Comparison of Feature Difference Generation
par: Hyeryun Park, et autres
Publié: (2021) -
Building Extraction from Remote Sensing Images with Sparse Token Transformers
par: Keyan Chen, et autres
Publié: (2021) -
Sparse Reconstruction for Near-Field MIMO Radar Imaging Using Fast Multipole Method
par: Emre A. Miran, et autres
Publié: (2021)