Characterizing dissimilarity of weighted networks

Abstract Measuring the dissimilarities between networks is a basic problem and wildly used in many fields. Based on method of the D-measure which is suggested for unweighted networks, we propose a quantitative dissimilarity metric of weighted network (WD-metric). Crucially, we construct a distance p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuanxiang Jiang, Meng Li, Ying Fan, Zengru Di
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8d3e923e8ebc4bb49167b230577523b5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Measuring the dissimilarities between networks is a basic problem and wildly used in many fields. Based on method of the D-measure which is suggested for unweighted networks, we propose a quantitative dissimilarity metric of weighted network (WD-metric). Crucially, we construct a distance probability matrix of weighted network, which can capture the comprehensive information of weighted network. Moreover, we define the complementary graph and alpha centrality of weighted network. Correspondingly, several synthetic and real-world networks are used to verify the effectiveness of the WD-metric. Experimental results show that WD-metric can effectively capture the influence of weight on the network structure and quantitatively measure the dissimilarity of weighted networks. It can also be used as a criterion for backbone extraction algorithms of complex network.