Mapping Population Distribution Based on XGBoost Using Multisource Data
Mapping fine-scale distribution of the population is essential to the study of human activities, where more reliable open-access big data could be excavated with the help of machine learning models. However, the combination of multisource datasets and multidimensional features for population estimat...
Guardado en:
Autores principales: | Xin Zhao, Nan Xia, Yunyun Xu, Xuefeng Huang, Manchun Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d4589b2cbf74680a2742075702c11bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient Seismic Stability Analysis of Embankment Slopes Subjected to Water Level Changes Using Gradient Boosting Algorithms
por: Luqi Wang, et al.
Publicado: (2021) -
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
por: Dariusz Majerek, et al.
Publicado: (2021) -
Experimental Analysis of GBM to Expand the Time Horizon of Irish Electricity Price Forecasts
por: Conor Lynch, et al.
Publicado: (2021) -
Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media
por: Sebastian Kurten, et al.
Publicado: (2021) -
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021)