Finding gene network topologies for given biological function with recurrent neural network
Networks are useful ways to describe interactions between molecules in a cell, but predicting the real topology of large networks can be challenging. Here, the authors use deep learning to predict the topology of networks that perform biologically-plausible functions.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d4a9caf655a48a7a4ae61cbbeee9d44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8d4a9caf655a48a7a4ae61cbbeee9d44 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8d4a9caf655a48a7a4ae61cbbeee9d442021-12-02T16:52:57ZFinding gene network topologies for given biological function with recurrent neural network10.1038/s41467-021-23420-52041-1723https://doaj.org/article/8d4a9caf655a48a7a4ae61cbbeee9d442021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23420-5https://doaj.org/toc/2041-1723Networks are useful ways to describe interactions between molecules in a cell, but predicting the real topology of large networks can be challenging. Here, the authors use deep learning to predict the topology of networks that perform biologically-plausible functions.Jingxiang ShenFeng LiuYuhai TuChao TangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jingxiang Shen Feng Liu Yuhai Tu Chao Tang Finding gene network topologies for given biological function with recurrent neural network |
description |
Networks are useful ways to describe interactions between molecules in a cell, but predicting the real topology of large networks can be challenging. Here, the authors use deep learning to predict the topology of networks that perform biologically-plausible functions. |
format |
article |
author |
Jingxiang Shen Feng Liu Yuhai Tu Chao Tang |
author_facet |
Jingxiang Shen Feng Liu Yuhai Tu Chao Tang |
author_sort |
Jingxiang Shen |
title |
Finding gene network topologies for given biological function with recurrent neural network |
title_short |
Finding gene network topologies for given biological function with recurrent neural network |
title_full |
Finding gene network topologies for given biological function with recurrent neural network |
title_fullStr |
Finding gene network topologies for given biological function with recurrent neural network |
title_full_unstemmed |
Finding gene network topologies for given biological function with recurrent neural network |
title_sort |
finding gene network topologies for given biological function with recurrent neural network |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/8d4a9caf655a48a7a4ae61cbbeee9d44 |
work_keys_str_mv |
AT jingxiangshen findinggenenetworktopologiesforgivenbiologicalfunctionwithrecurrentneuralnetwork AT fengliu findinggenenetworktopologiesforgivenbiologicalfunctionwithrecurrentneuralnetwork AT yuhaitu findinggenenetworktopologiesforgivenbiologicalfunctionwithrecurrentneuralnetwork AT chaotang findinggenenetworktopologiesforgivenbiologicalfunctionwithrecurrentneuralnetwork |
_version_ |
1718382932367769600 |