Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid
Abstract Neochlorogenic acid, a less-studied isomer of chlorogenic acid, has been seen to posses antioxidant, antifungal, anti-inflammatory and anticarcinogenic effects, which makes it an interesting candidate for incorporation in functional foods. However, its poor solubility in water and susceptib...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d4cbdbccf74461bb7d6b418b845ae7f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8d4cbdbccf74461bb7d6b418b845ae7f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8d4cbdbccf74461bb7d6b418b845ae7f2021-12-02T14:26:47ZStudy of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid10.1038/s41598-021-82915-92045-2322https://doaj.org/article/8d4cbdbccf74461bb7d6b418b845ae7f2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82915-9https://doaj.org/toc/2045-2322Abstract Neochlorogenic acid, a less-studied isomer of chlorogenic acid, has been seen to posses antioxidant, antifungal, anti-inflammatory and anticarcinogenic effects, which makes it an interesting candidate for incorporation in functional foods. However, its poor solubility in water and susceptibility to oxidation make such a task difficult. To overcome that, its encapsulation in cyclodextrins (CDs) is proposed. The fluorescence of neochlorogenic acid in different pH conditions was analyzed, and caffeic acid was proved to be the fluorescent moiety in the molecule. An encapsulation model whereby the ligand poses two potential complexation sites (caffeic and D-(-)-quinic moieties), showed that α-CD and HP-β-CD formed the best inclusion complexes with neochlorogenic acid, followed by M-β-CD, β-CD and γ-CD. Molecular docking with the two best CDs gave better scores for α-CD, despite HP-β-CD providing stabilization through H-bonds. The encapsulation of chlorogenic acid led to a similar CD order and scores, although constants were higher for α-CD, β-CD and M-β-CD, lower for HP-β-CD, and negligible for γ-CD. The protonation state affected these results leading to a different order of CD preference. The solubility and the susceptibility to oxidation of neochlorogenic acid improved after complexation with α-CD and HP-β-CD, while the antioxidant activity of both isomers was maintained.Silvia Navarro-OrcajadaAdrián MatencioCristina Vicente-HerreroFrancisco García-CarmonaJosé Manuel López-NicolásNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Silvia Navarro-Orcajada Adrián Matencio Cristina Vicente-Herrero Francisco García-Carmona José Manuel López-Nicolás Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid |
description |
Abstract Neochlorogenic acid, a less-studied isomer of chlorogenic acid, has been seen to posses antioxidant, antifungal, anti-inflammatory and anticarcinogenic effects, which makes it an interesting candidate for incorporation in functional foods. However, its poor solubility in water and susceptibility to oxidation make such a task difficult. To overcome that, its encapsulation in cyclodextrins (CDs) is proposed. The fluorescence of neochlorogenic acid in different pH conditions was analyzed, and caffeic acid was proved to be the fluorescent moiety in the molecule. An encapsulation model whereby the ligand poses two potential complexation sites (caffeic and D-(-)-quinic moieties), showed that α-CD and HP-β-CD formed the best inclusion complexes with neochlorogenic acid, followed by M-β-CD, β-CD and γ-CD. Molecular docking with the two best CDs gave better scores for α-CD, despite HP-β-CD providing stabilization through H-bonds. The encapsulation of chlorogenic acid led to a similar CD order and scores, although constants were higher for α-CD, β-CD and M-β-CD, lower for HP-β-CD, and negligible for γ-CD. The protonation state affected these results leading to a different order of CD preference. The solubility and the susceptibility to oxidation of neochlorogenic acid improved after complexation with α-CD and HP-β-CD, while the antioxidant activity of both isomers was maintained. |
format |
article |
author |
Silvia Navarro-Orcajada Adrián Matencio Cristina Vicente-Herrero Francisco García-Carmona José Manuel López-Nicolás |
author_facet |
Silvia Navarro-Orcajada Adrián Matencio Cristina Vicente-Herrero Francisco García-Carmona José Manuel López-Nicolás |
author_sort |
Silvia Navarro-Orcajada |
title |
Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid |
title_short |
Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid |
title_full |
Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid |
title_fullStr |
Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid |
title_full_unstemmed |
Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid |
title_sort |
study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/8d4cbdbccf74461bb7d6b418b845ae7f |
work_keys_str_mv |
AT silvianavarroorcajada studyofthefluorescenceandinteractionbetweencyclodextrinsandneochlorogenicacidincomparisonwithchlorogenicacid AT adrianmatencio studyofthefluorescenceandinteractionbetweencyclodextrinsandneochlorogenicacidincomparisonwithchlorogenicacid AT cristinavicenteherrero studyofthefluorescenceandinteractionbetweencyclodextrinsandneochlorogenicacidincomparisonwithchlorogenicacid AT franciscogarciacarmona studyofthefluorescenceandinteractionbetweencyclodextrinsandneochlorogenicacidincomparisonwithchlorogenicacid AT josemanuellopeznicolas studyofthefluorescenceandinteractionbetweencyclodextrinsandneochlorogenicacidincomparisonwithchlorogenicacid |
_version_ |
1718391324602793984 |