Photomolecular High-Temperature Superconductivity
The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manip...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d4f7be3595340edb88ede0caf03d5fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8d4f7be3595340edb88ede0caf03d5fe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8d4f7be3595340edb88ede0caf03d5fe2021-12-02T14:23:07ZPhotomolecular High-Temperature Superconductivity10.1103/PhysRevX.10.0310282160-3308https://doaj.org/article/8d4f7be3595340edb88ede0caf03d5fe2020-08-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.031028http://doi.org/10.1103/PhysRevX.10.031028https://doaj.org/toc/2160-3308The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T^{*}≃50 K, far higher than the equilibrium transition temperature T_{C}=12.5 K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.M. BuzziD. NicolettiM. FechnerN. Tancogne-DejeanM. A. SentefA. GeorgesT. BiesnerE. UykurM. DresselA. HendersonT. SiegristJ. A. SchlueterK. MiyagawaK. KanodaM.-S. NamA. ArdavanJ. CoulthardJ. TindallF. SchlawinD. JakschA. CavalleriAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 3, p 031028 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 M. Buzzi D. Nicoletti M. Fechner N. Tancogne-Dejean M. A. Sentef A. Georges T. Biesner E. Uykur M. Dressel A. Henderson T. Siegrist J. A. Schlueter K. Miyagawa K. Kanoda M.-S. Nam A. Ardavan J. Coulthard J. Tindall F. Schlawin D. Jaksch A. Cavalleri Photomolecular High-Temperature Superconductivity |
description |
The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T^{*}≃50 K, far higher than the equilibrium transition temperature T_{C}=12.5 K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity. |
format |
article |
author |
M. Buzzi D. Nicoletti M. Fechner N. Tancogne-Dejean M. A. Sentef A. Georges T. Biesner E. Uykur M. Dressel A. Henderson T. Siegrist J. A. Schlueter K. Miyagawa K. Kanoda M.-S. Nam A. Ardavan J. Coulthard J. Tindall F. Schlawin D. Jaksch A. Cavalleri |
author_facet |
M. Buzzi D. Nicoletti M. Fechner N. Tancogne-Dejean M. A. Sentef A. Georges T. Biesner E. Uykur M. Dressel A. Henderson T. Siegrist J. A. Schlueter K. Miyagawa K. Kanoda M.-S. Nam A. Ardavan J. Coulthard J. Tindall F. Schlawin D. Jaksch A. Cavalleri |
author_sort |
M. Buzzi |
title |
Photomolecular High-Temperature Superconductivity |
title_short |
Photomolecular High-Temperature Superconductivity |
title_full |
Photomolecular High-Temperature Superconductivity |
title_fullStr |
Photomolecular High-Temperature Superconductivity |
title_full_unstemmed |
Photomolecular High-Temperature Superconductivity |
title_sort |
photomolecular high-temperature superconductivity |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/8d4f7be3595340edb88ede0caf03d5fe |
work_keys_str_mv |
AT mbuzzi photomolecularhightemperaturesuperconductivity AT dnicoletti photomolecularhightemperaturesuperconductivity AT mfechner photomolecularhightemperaturesuperconductivity AT ntancognedejean photomolecularhightemperaturesuperconductivity AT masentef photomolecularhightemperaturesuperconductivity AT ageorges photomolecularhightemperaturesuperconductivity AT tbiesner photomolecularhightemperaturesuperconductivity AT euykur photomolecularhightemperaturesuperconductivity AT mdressel photomolecularhightemperaturesuperconductivity AT ahenderson photomolecularhightemperaturesuperconductivity AT tsiegrist photomolecularhightemperaturesuperconductivity AT jaschlueter photomolecularhightemperaturesuperconductivity AT kmiyagawa photomolecularhightemperaturesuperconductivity AT kkanoda photomolecularhightemperaturesuperconductivity AT msnam photomolecularhightemperaturesuperconductivity AT aardavan photomolecularhightemperaturesuperconductivity AT jcoulthard photomolecularhightemperaturesuperconductivity AT jtindall photomolecularhightemperaturesuperconductivity AT fschlawin photomolecularhightemperaturesuperconductivity AT djaksch photomolecularhightemperaturesuperconductivity AT acavalleri photomolecularhightemperaturesuperconductivity |
_version_ |
1718391438554693632 |