Photomolecular High-Temperature Superconductivity

The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manip...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Buzzi, D. Nicoletti, M. Fechner, N. Tancogne-Dejean, M. A. Sentef, A. Georges, T. Biesner, E. Uykur, M. Dressel, A. Henderson, T. Siegrist, J. A. Schlueter, K. Miyagawa, K. Kanoda, M.-S. Nam, A. Ardavan, J. Coulthard, J. Tindall, F. Schlawin, D. Jaksch, A. Cavalleri
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2020
Materias:
Acceso en línea:https://doaj.org/article/8d4f7be3595340edb88ede0caf03d5fe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8d4f7be3595340edb88ede0caf03d5fe
record_format dspace
spelling oai:doaj.org-article:8d4f7be3595340edb88ede0caf03d5fe2021-12-02T14:23:07ZPhotomolecular High-Temperature Superconductivity10.1103/PhysRevX.10.0310282160-3308https://doaj.org/article/8d4f7be3595340edb88ede0caf03d5fe2020-08-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.031028http://doi.org/10.1103/PhysRevX.10.031028https://doaj.org/toc/2160-3308The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T^{*}≃50  K, far higher than the equilibrium transition temperature T_{C}=12.5  K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.M. BuzziD. NicolettiM. FechnerN. Tancogne-DejeanM. A. SentefA. GeorgesT. BiesnerE. UykurM. DresselA. HendersonT. SiegristJ. A. SchlueterK. MiyagawaK. KanodaM.-S. NamA. ArdavanJ. CoulthardJ. TindallF. SchlawinD. JakschA. CavalleriAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 3, p 031028 (2020)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
M. Buzzi
D. Nicoletti
M. Fechner
N. Tancogne-Dejean
M. A. Sentef
A. Georges
T. Biesner
E. Uykur
M. Dressel
A. Henderson
T. Siegrist
J. A. Schlueter
K. Miyagawa
K. Kanoda
M.-S. Nam
A. Ardavan
J. Coulthard
J. Tindall
F. Schlawin
D. Jaksch
A. Cavalleri
Photomolecular High-Temperature Superconductivity
description The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T^{*}≃50  K, far higher than the equilibrium transition temperature T_{C}=12.5  K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.
format article
author M. Buzzi
D. Nicoletti
M. Fechner
N. Tancogne-Dejean
M. A. Sentef
A. Georges
T. Biesner
E. Uykur
M. Dressel
A. Henderson
T. Siegrist
J. A. Schlueter
K. Miyagawa
K. Kanoda
M.-S. Nam
A. Ardavan
J. Coulthard
J. Tindall
F. Schlawin
D. Jaksch
A. Cavalleri
author_facet M. Buzzi
D. Nicoletti
M. Fechner
N. Tancogne-Dejean
M. A. Sentef
A. Georges
T. Biesner
E. Uykur
M. Dressel
A. Henderson
T. Siegrist
J. A. Schlueter
K. Miyagawa
K. Kanoda
M.-S. Nam
A. Ardavan
J. Coulthard
J. Tindall
F. Schlawin
D. Jaksch
A. Cavalleri
author_sort M. Buzzi
title Photomolecular High-Temperature Superconductivity
title_short Photomolecular High-Temperature Superconductivity
title_full Photomolecular High-Temperature Superconductivity
title_fullStr Photomolecular High-Temperature Superconductivity
title_full_unstemmed Photomolecular High-Temperature Superconductivity
title_sort photomolecular high-temperature superconductivity
publisher American Physical Society
publishDate 2020
url https://doaj.org/article/8d4f7be3595340edb88ede0caf03d5fe
work_keys_str_mv AT mbuzzi photomolecularhightemperaturesuperconductivity
AT dnicoletti photomolecularhightemperaturesuperconductivity
AT mfechner photomolecularhightemperaturesuperconductivity
AT ntancognedejean photomolecularhightemperaturesuperconductivity
AT masentef photomolecularhightemperaturesuperconductivity
AT ageorges photomolecularhightemperaturesuperconductivity
AT tbiesner photomolecularhightemperaturesuperconductivity
AT euykur photomolecularhightemperaturesuperconductivity
AT mdressel photomolecularhightemperaturesuperconductivity
AT ahenderson photomolecularhightemperaturesuperconductivity
AT tsiegrist photomolecularhightemperaturesuperconductivity
AT jaschlueter photomolecularhightemperaturesuperconductivity
AT kmiyagawa photomolecularhightemperaturesuperconductivity
AT kkanoda photomolecularhightemperaturesuperconductivity
AT msnam photomolecularhightemperaturesuperconductivity
AT aardavan photomolecularhightemperaturesuperconductivity
AT jcoulthard photomolecularhightemperaturesuperconductivity
AT jtindall photomolecularhightemperaturesuperconductivity
AT fschlawin photomolecularhightemperaturesuperconductivity
AT djaksch photomolecularhightemperaturesuperconductivity
AT acavalleri photomolecularhightemperaturesuperconductivity
_version_ 1718391438554693632