Characteristics of the heme catabolic pathway in mild unconjugated hyperbilirubinemia and their associations with inflammation and disease prevention
Abstract Heme catabolism exerts physiological functions that impact health through depressing inflammation. Upon reactive pathway progression, as in Gilbert’s Syndrome (GS; UGT1A1*28 polymorphism), aggravated health effects have been determined. Based on lower inflammation and improved metabolic hea...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d5e141c6064459cb511c1c0b44ffaa8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Heme catabolism exerts physiological functions that impact health through depressing inflammation. Upon reactive pathway progression, as in Gilbert’s Syndrome (GS; UGT1A1*28 polymorphism), aggravated health effects have been determined. Based on lower inflammation and improved metabolic health reported for GS, inter-group differences in heme catabolism were explored. Therefore, a case-control study including 120 fasted, healthy, age- and gender matched subjects with/without GS, was conducted. Genetic expressions of HMOX-1 and BLVRA were measured. Additionally participants were genotyped for those polymorphisms that are known (UGT1A1*28) or likely (HMOX-1 microsatellites) to impact bilirubinemia. Intracellular interleukins (IL-6, IL-1β, TNFα), circulatory C-reactive protein (CRP), serum amyloid A (SAA) and haptoglobin (Hpt) were analysed as inflammatory markers. To assess intracellular heme oxygenase 1 (HO-1) isolated PBMCs were used. In GS vs. C, inflammation markers were significantly decreased. This was supported by an altered heme catabolism, indirectly reflecting in elevated unconjugated bilirubin (UCB; main phenotypic feature of GS) and iron, decreased hemopexin (Hpx) and Hpt and in up-regulated biliverdin reductase (BLVRA) gene expressions. Moreover, HMOX (GT)n short alleles were non-significantly more prominent in female GS individuals. Herewith, we propose a concept to elucidate why GS individuals encounter lower inflammation, and are thus less prone to oxidative-stress mediated diseases. |
---|