Deep Learning Based Monitoring of Spatter Behavior by the Acoustic Signal in Selective Laser Melting
As one of the most promising metal additive manufacturing (AM) technologies, the selective laser melting (SLM) process has high expectations ofr its use in aerospace, medical, and other fields. However, various defects such as spatter, crack, and porosity seriously hinder the applications of the SLM...
Guardado en:
Autores principales: | Shuyang Luo, Xiuquan Ma, Jie Xu, Menglei Li, Longchao Cao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d655a9aa96e49fb8af97659bf163073 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatter reduction by multi-beam illumination in laser powder-bed fusion
por: Marcel Slodczyk, et al.
Publicado: (2021) -
Pure titanium fabrication with spatter-less selective laser melting in vacuum
por: Yuji Sato, et al.
Publicado: (2021) -
Effect of welding parameters on spatter formation in full-penetration laser welding of titanium alloys
por: Hao Cheng, et al.
Publicado: (2021) -
Acoustic wave detection of laser shock peening
por: Wu Jiajun, et al.
Publicado: (2018) -
Molecular Dynamics Simulations of the Tensile Mechanical Responses of Selective Laser-Melted Aluminum with Different Crystalline Forms
por: Qiang Zeng, et al.
Publicado: (2021)