Asthma-prone areas modeling using a machine learning model
Abstract Nowadays, owing to population growth, increasing environmental pollution, and lifestyle changes, the number of asthmatics has significantly increased. Therefore, the purpose of our study was to determine the asthma-prone areas in Tehran, Iran considering environmental, spatial factors. Init...
Enregistré dans:
Auteurs principaux: | Seyed Vahid Razavi-Termeh, Abolghasem Sadeghi-Niaraki, Soo-Mi Choi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8d6decd62e484710947f6961f8c0eafd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Survey of GIS and IoT Integration: Applications and Architecture
par: Jalal Safari Bazargani, et autres
Publié: (2021) -
Development of childhood asthma prediction models using machine learning approaches
par: Dilini M. Kothalawala, et autres
Publié: (2021) -
Open Application of Statistical and Machine Learning Models to Explore the Impact of Environmental Exposures on Health and Disease: An Asthma Use Case
par: Bo Lan, et autres
Publié: (2021) -
Zonation of flood prone areas by an integrated framework of a hydrodynamic model and ANN
par: Ravindra Kumar Singh, et autres
Publié: (2021) -
Predictive modeling for peri-implantitis by using machine learning techniques
par: Tomoaki Mameno, et autres
Publié: (2021)