Thermal pace-of-life strategies improve phenological predictions in ectotherms
Abstract Phenological variability among populations is widespread in nature. A few predictive phenological models integrate intrapopulational variability, but none has ever explored the individual strategies potentially occurring within a population. The “pace-of-life” syndrome accounts for such ind...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d741f9e7e5b43a6a0f06eb2e9ec2390 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8d741f9e7e5b43a6a0f06eb2e9ec2390 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8d741f9e7e5b43a6a0f06eb2e9ec23902021-12-02T15:07:44ZThermal pace-of-life strategies improve phenological predictions in ectotherms10.1038/s41598-018-34274-12045-2322https://doaj.org/article/8d741f9e7e5b43a6a0f06eb2e9ec23902018-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-34274-1https://doaj.org/toc/2045-2322Abstract Phenological variability among populations is widespread in nature. A few predictive phenological models integrate intrapopulational variability, but none has ever explored the individual strategies potentially occurring within a population. The “pace-of-life” syndrome accounts for such individual strategies, but has yet to be explored under a phenological context. Here we integrated, for the first time, the slow-fast thermal strategies stemming from the “pace-of-life” into a mechanistic predictive framework. We obtained 4619 phenological observations of an important crop pest in the Bolivian Andes by individually following 840 individuals under five rearing temperatures and across nine life stages. The model calibrated with the observed individual “pace-of-life” strategies showed a higher accuracy in phenological predictions than when accounting for intrapopulational variability alone. We further explored our framework with generated data and suggest that ectotherm species with a high number of life stages and with slow and/or fast individuals should exhibit a greater variance of populational phenology, resulting in a potentially longer time window of interaction with other species. We believe that the “pace-of-life” framework is a promising approach to improve phenological prediction across a wide array of species.Quentin StruelensFrançois RebaudoReinaldo QuispeOlivier DanglesNature PortfolioarticlePhenological PredictionsFasting IndividualsSubsequent Life StagesThermal Performance Curves (TPC)Development Accumulation ProcessMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Phenological Predictions Fasting Individuals Subsequent Life Stages Thermal Performance Curves (TPC) Development Accumulation Process Medicine R Science Q |
spellingShingle |
Phenological Predictions Fasting Individuals Subsequent Life Stages Thermal Performance Curves (TPC) Development Accumulation Process Medicine R Science Q Quentin Struelens François Rebaudo Reinaldo Quispe Olivier Dangles Thermal pace-of-life strategies improve phenological predictions in ectotherms |
description |
Abstract Phenological variability among populations is widespread in nature. A few predictive phenological models integrate intrapopulational variability, but none has ever explored the individual strategies potentially occurring within a population. The “pace-of-life” syndrome accounts for such individual strategies, but has yet to be explored under a phenological context. Here we integrated, for the first time, the slow-fast thermal strategies stemming from the “pace-of-life” into a mechanistic predictive framework. We obtained 4619 phenological observations of an important crop pest in the Bolivian Andes by individually following 840 individuals under five rearing temperatures and across nine life stages. The model calibrated with the observed individual “pace-of-life” strategies showed a higher accuracy in phenological predictions than when accounting for intrapopulational variability alone. We further explored our framework with generated data and suggest that ectotherm species with a high number of life stages and with slow and/or fast individuals should exhibit a greater variance of populational phenology, resulting in a potentially longer time window of interaction with other species. We believe that the “pace-of-life” framework is a promising approach to improve phenological prediction across a wide array of species. |
format |
article |
author |
Quentin Struelens François Rebaudo Reinaldo Quispe Olivier Dangles |
author_facet |
Quentin Struelens François Rebaudo Reinaldo Quispe Olivier Dangles |
author_sort |
Quentin Struelens |
title |
Thermal pace-of-life strategies improve phenological predictions in ectotherms |
title_short |
Thermal pace-of-life strategies improve phenological predictions in ectotherms |
title_full |
Thermal pace-of-life strategies improve phenological predictions in ectotherms |
title_fullStr |
Thermal pace-of-life strategies improve phenological predictions in ectotherms |
title_full_unstemmed |
Thermal pace-of-life strategies improve phenological predictions in ectotherms |
title_sort |
thermal pace-of-life strategies improve phenological predictions in ectotherms |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/8d741f9e7e5b43a6a0f06eb2e9ec2390 |
work_keys_str_mv |
AT quentinstruelens thermalpaceoflifestrategiesimprovephenologicalpredictionsinectotherms AT francoisrebaudo thermalpaceoflifestrategiesimprovephenologicalpredictionsinectotherms AT reinaldoquispe thermalpaceoflifestrategiesimprovephenologicalpredictionsinectotherms AT olivierdangles thermalpaceoflifestrategiesimprovephenologicalpredictionsinectotherms |
_version_ |
1718388402369331200 |