Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel

Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cathrine Bergh, Stephanie A Heusser, Rebecca Howard, Erik Lindahl
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8d7ef17dfa724cc3afa78e5417a615be
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8d7ef17dfa724cc3afa78e5417a615be
record_format dspace
spelling oai:doaj.org-article:8d7ef17dfa724cc3afa78e5417a615be2021-12-01T15:18:33ZMarkov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel10.7554/eLife.683692050-084Xe68369https://doaj.org/article/8d7ef17dfa724cc3afa78e5417a615be2021-10-01T00:00:00Zhttps://elifesciences.org/articles/68369https://doaj.org/toc/2050-084XLigand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.Cathrine BerghStephanie A HeusserRebecca HowardErik LindahleLife Sciences Publications Ltdarticleligand-gated ion channelgatingallosteric modulationmolecular dynamicselectrophysiologymarkov state modelMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic ligand-gated ion channel
gating
allosteric modulation
molecular dynamics
electrophysiology
markov state model
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle ligand-gated ion channel
gating
allosteric modulation
molecular dynamics
electrophysiology
markov state model
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Cathrine Bergh
Stephanie A Heusser
Rebecca Howard
Erik Lindahl
Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
description Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.
format article
author Cathrine Bergh
Stephanie A Heusser
Rebecca Howard
Erik Lindahl
author_facet Cathrine Bergh
Stephanie A Heusser
Rebecca Howard
Erik Lindahl
author_sort Cathrine Bergh
title Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
title_short Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
title_full Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
title_fullStr Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
title_full_unstemmed Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
title_sort markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/8d7ef17dfa724cc3afa78e5417a615be
work_keys_str_mv AT cathrinebergh markovstatemodelsofprotonandporedependentactivationinapentamericligandgatedionchannel
AT stephanieaheusser markovstatemodelsofprotonandporedependentactivationinapentamericligandgatedionchannel
AT rebeccahoward markovstatemodelsofprotonandporedependentactivationinapentamericligandgatedionchannel
AT eriklindahl markovstatemodelsofprotonandporedependentactivationinapentamericligandgatedionchannel
_version_ 1718404827868823552