Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet.
The ability to automatically detect and classify populations of cells in tissue sections is paramount in a wide variety of applications ranging from developmental biology to pathology. Although deep learning algorithms are widely applied to microscopy data, they typically focus on segmentation which...
Guardado en:
Autores principales: | Yuheng Cai, Xuying Zhang, Shahar Z Kovalsky, H Troy Ghashghaei, Alon Greenbaum |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d8d4ca159c041cfaf050e1cf75338e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Detection and Counting of Blood Cells in Smear Images Using RetinaNet
por: Grzegorz Drałus, et al.
Publicado: (2021) -
Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification
por: Lu Tan, et al.
Publicado: (2021) -
Neuronal processes and glial precursors form a scaffold for wiring the developing mouse cochlea
por: N. R. Druckenbrod, et al.
Publicado: (2020) -
The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis
por: Shree Ram Singh, et al.
Publicado: (2016) -
Glial and endothelial blood-retinal barrier responses to amyloid-β in the neural retina of the rat
por: Peter JB Anderson, et al.
Publicado: (2008)