A Robust Framework for MADS Based on DL Techniques on the IoT
Day after day, new types of malware are appearing, renewing, and continuously developing, which makes it difficult to identify and stop them. Some attackers exploit artificial intelligence (AI) to create renewable malware with different signatures that are difficult to detect. Therefore, the perform...
Enregistré dans:
Auteurs principaux: | Hussah Talal, Rachid Zagrouba |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8d91ad0d89bd4fb7b5e751697514d8e4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MADS Based on DL Techniques on the Internet of Things (IoT): Survey
par: Hussah Talal, et autres
Publié: (2021) -
A survey and taxonomy of program analysis for IoT platforms
par: Alyaa A. Hamza, et autres
Publié: (2021) -
IoT Dataset Validation Using Machine Learning Techniques for Traffic Anomaly Detection
par: Laura Vigoya, et autres
Publié: (2021) -
Shape adaptive IRS based SAG IoT network
par: Fei Qi, et autres
Publié: (2021) -
An Anomaly-Based Intrusion Detection System for Internet of Medical Things Networks
par: Georgios Zachos, et autres
Publié: (2021)