A Robust Framework for MADS Based on DL Techniques on the IoT
Day after day, new types of malware are appearing, renewing, and continuously developing, which makes it difficult to identify and stop them. Some attackers exploit artificial intelligence (AI) to create renewable malware with different signatures that are difficult to detect. Therefore, the perform...
Guardado en:
Autores principales: | Hussah Talal, Rachid Zagrouba |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d91ad0d89bd4fb7b5e751697514d8e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MADS Based on DL Techniques on the Internet of Things (IoT): Survey
por: Hussah Talal, et al.
Publicado: (2021) -
A survey and taxonomy of program analysis for IoT platforms
por: Alyaa A. Hamza, et al.
Publicado: (2021) -
IoT Dataset Validation Using Machine Learning Techniques for Traffic Anomaly Detection
por: Laura Vigoya, et al.
Publicado: (2021) -
Shape adaptive IRS based SAG IoT network
por: Fei Qi, et al.
Publicado: (2021) -
An Anomaly-Based Intrusion Detection System for Internet of Medical Things Networks
por: Georgios Zachos, et al.
Publicado: (2021)