Frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn6
Abstract In chiral cubic helimagnets, phases of magnetic skyrmions—topologically protected spin whirls—are stabilized by thermal fluctuations over a narrow region directly below the magnetic ordering temperature T c. Due to often being touted for use in applications, there is a high demand to identi...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d91e6a15f344edcafc12a1718b9a079 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8d91e6a15f344edcafc12a1718b9a079 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8d91e6a15f344edcafc12a1718b9a0792021-12-02T15:27:12ZFrustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn610.1038/s41535-021-00342-52397-4648https://doaj.org/article/8d91e6a15f344edcafc12a1718b9a0792021-04-01T00:00:00Zhttps://doi.org/10.1038/s41535-021-00342-5https://doaj.org/toc/2397-4648Abstract In chiral cubic helimagnets, phases of magnetic skyrmions—topologically protected spin whirls—are stabilized by thermal fluctuations over a narrow region directly below the magnetic ordering temperature T c. Due to often being touted for use in applications, there is a high demand to identify new ways to stabilize equilibrium skyrmion phases far below T c where they may display an enhanced robustness against external perturbation due to a larger magnetic order parameter. Here, from quantum beam experiments on the chiral magnet Co7Zn7Mn6, we unveil a direct correlation between the stability of its second skyrmion phase-stable far from T c, and a concomitant enhancement of an underlying magnetic fluctuation rate that is driven by geometric magnetic frustration. The influences of other leading skyrmion stability mechanisms, such as those derived from thermal fluctuations and low T cubic anisotropies, are shown to be weak in this system. We therefore advance the existence of a fundamental mechanism for stabilizing topological skyrmions in Co7Zn7Mn6 chiral magnet that draws upon magnetic frustration as the key ingredient.V. UkleevK. KarubeP. M. DerletC. N. WangH. LuetkensD. MorikawaA. KikkawaL. Mangin-ThroA. R. WildesY. YamasakiY. YokoyamaL. YuC. PiamontezeN. JaouenY. TokunagaH. M. RønnowT. ArimaY. TokuraY. TaguchiJ. S. WhiteNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 6, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 V. Ukleev K. Karube P. M. Derlet C. N. Wang H. Luetkens D. Morikawa A. Kikkawa L. Mangin-Thro A. R. Wildes Y. Yamasaki Y. Yokoyama L. Yu C. Piamonteze N. Jaouen Y. Tokunaga H. M. Rønnow T. Arima Y. Tokura Y. Taguchi J. S. White Frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn6 |
description |
Abstract In chiral cubic helimagnets, phases of magnetic skyrmions—topologically protected spin whirls—are stabilized by thermal fluctuations over a narrow region directly below the magnetic ordering temperature T c. Due to often being touted for use in applications, there is a high demand to identify new ways to stabilize equilibrium skyrmion phases far below T c where they may display an enhanced robustness against external perturbation due to a larger magnetic order parameter. Here, from quantum beam experiments on the chiral magnet Co7Zn7Mn6, we unveil a direct correlation between the stability of its second skyrmion phase-stable far from T c, and a concomitant enhancement of an underlying magnetic fluctuation rate that is driven by geometric magnetic frustration. The influences of other leading skyrmion stability mechanisms, such as those derived from thermal fluctuations and low T cubic anisotropies, are shown to be weak in this system. We therefore advance the existence of a fundamental mechanism for stabilizing topological skyrmions in Co7Zn7Mn6 chiral magnet that draws upon magnetic frustration as the key ingredient. |
format |
article |
author |
V. Ukleev K. Karube P. M. Derlet C. N. Wang H. Luetkens D. Morikawa A. Kikkawa L. Mangin-Thro A. R. Wildes Y. Yamasaki Y. Yokoyama L. Yu C. Piamonteze N. Jaouen Y. Tokunaga H. M. Rønnow T. Arima Y. Tokura Y. Taguchi J. S. White |
author_facet |
V. Ukleev K. Karube P. M. Derlet C. N. Wang H. Luetkens D. Morikawa A. Kikkawa L. Mangin-Thro A. R. Wildes Y. Yamasaki Y. Yokoyama L. Yu C. Piamonteze N. Jaouen Y. Tokunaga H. M. Rønnow T. Arima Y. Tokura Y. Taguchi J. S. White |
author_sort |
V. Ukleev |
title |
Frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn6 |
title_short |
Frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn6 |
title_full |
Frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn6 |
title_fullStr |
Frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn6 |
title_full_unstemmed |
Frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in Co7Zn7Mn6 |
title_sort |
frustration-driven magnetic fluctuations as the origin of the low-temperature skyrmion phase in co7zn7mn6 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/8d91e6a15f344edcafc12a1718b9a079 |
work_keys_str_mv |
AT vukleev frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT kkarube frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT pmderlet frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT cnwang frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT hluetkens frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT dmorikawa frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT akikkawa frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT lmanginthro frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT arwildes frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT yyamasaki frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT yyokoyama frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT lyu frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT cpiamonteze frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT njaouen frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT ytokunaga frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT hmrønnow frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT tarima frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT ytokura frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT ytaguchi frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 AT jswhite frustrationdrivenmagneticfluctuationsastheoriginofthelowtemperatureskyrmionphaseinco7zn7mn6 |
_version_ |
1718387217550802944 |