ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.

Transcription factors (TFs) often function as a module including both master factors and mediators binding at cis-regulatory regions to modulate nearby gene transcription. ChIP-seq profiling of multiple TFs makes it feasible to infer functional TF modules. However, when inferring TF modules based on...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xi Chen, Andrew F Neuwald, Leena Hilakivi-Clarke, Robert Clarke, Jianhua Xuan
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/8dab73ad1e7f4e9e9a60c5ae09697eda
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8dab73ad1e7f4e9e9a60c5ae09697eda
record_format dspace
spelling oai:doaj.org-article:8dab73ad1e7f4e9e9a60c5ae09697eda2021-12-02T19:57:23ZChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.1553-734X1553-735810.1371/journal.pcbi.1009203https://doaj.org/article/8dab73ad1e7f4e9e9a60c5ae09697eda2021-07-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009203https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Transcription factors (TFs) often function as a module including both master factors and mediators binding at cis-regulatory regions to modulate nearby gene transcription. ChIP-seq profiling of multiple TFs makes it feasible to infer functional TF modules. However, when inferring TF modules based on co-localization of ChIP-seq peaks, often many weak binding events are missed, especially for mediators, resulting in incomplete identification of modules. To address this problem, we develop a ChIP-seq data-driven Gibbs Sampler to infer Modules (ChIP-GSM) using a Bayesian framework that integrates ChIP-seq profiles of multiple TFs. ChIP-GSM samples read counts of module TFs iteratively to estimate the binding potential of a module to each region and, across all regions, estimates the module abundance. Using inferred module-region probabilistic bindings as feature units, ChIP-GSM then employs logistic regression to predict active regulatory elements. Validation of ChIP-GSM predicted regulatory regions on multiple independent datasets sharing the same context confirms the advantage of using TF modules for predicting regulatory activity. In a case study of K562 cells, we demonstrate that the ChIP-GSM inferred modules form as groups, activate gene expression at different time points, and mediate diverse functional cellular processes. Hence, ChIP-GSM infers biologically meaningful TF modules and improves the prediction accuracy of regulatory region activities.Xi ChenAndrew F NeuwaldLeena Hilakivi-ClarkeRobert ClarkeJianhua XuanPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 7, p e1009203 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Xi Chen
Andrew F Neuwald
Leena Hilakivi-Clarke
Robert Clarke
Jianhua Xuan
ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
description Transcription factors (TFs) often function as a module including both master factors and mediators binding at cis-regulatory regions to modulate nearby gene transcription. ChIP-seq profiling of multiple TFs makes it feasible to infer functional TF modules. However, when inferring TF modules based on co-localization of ChIP-seq peaks, often many weak binding events are missed, especially for mediators, resulting in incomplete identification of modules. To address this problem, we develop a ChIP-seq data-driven Gibbs Sampler to infer Modules (ChIP-GSM) using a Bayesian framework that integrates ChIP-seq profiles of multiple TFs. ChIP-GSM samples read counts of module TFs iteratively to estimate the binding potential of a module to each region and, across all regions, estimates the module abundance. Using inferred module-region probabilistic bindings as feature units, ChIP-GSM then employs logistic regression to predict active regulatory elements. Validation of ChIP-GSM predicted regulatory regions on multiple independent datasets sharing the same context confirms the advantage of using TF modules for predicting regulatory activity. In a case study of K562 cells, we demonstrate that the ChIP-GSM inferred modules form as groups, activate gene expression at different time points, and mediate diverse functional cellular processes. Hence, ChIP-GSM infers biologically meaningful TF modules and improves the prediction accuracy of regulatory region activities.
format article
author Xi Chen
Andrew F Neuwald
Leena Hilakivi-Clarke
Robert Clarke
Jianhua Xuan
author_facet Xi Chen
Andrew F Neuwald
Leena Hilakivi-Clarke
Robert Clarke
Jianhua Xuan
author_sort Xi Chen
title ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
title_short ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
title_full ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
title_fullStr ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
title_full_unstemmed ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
title_sort chip-gsm: inferring active transcription factor modules to predict functional regulatory elements.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/8dab73ad1e7f4e9e9a60c5ae09697eda
work_keys_str_mv AT xichen chipgsminferringactivetranscriptionfactormodulestopredictfunctionalregulatoryelements
AT andrewfneuwald chipgsminferringactivetranscriptionfactormodulestopredictfunctionalregulatoryelements
AT leenahilakiviclarke chipgsminferringactivetranscriptionfactormodulestopredictfunctionalregulatoryelements
AT robertclarke chipgsminferringactivetranscriptionfactormodulestopredictfunctionalregulatoryelements
AT jianhuaxuan chipgsminferringactivetranscriptionfactormodulestopredictfunctionalregulatoryelements
_version_ 1718375851977867264